The magnetic response of a degenerate electron gas in nanotubes with superlattice

  • G. I. Rashba Kharkiv National University named after V.N. Karazin Sq. Svobody 4, Kharkiv, 61022, Ukraine
Keywords: nanotube, superlattice, magnetic field, magnetic moment

Abstract

Within the framework of a simple model of the energy spectrum of electrons on the nanotube surface with a superlattice in a magnetic field, an analytical expression for the magnetic moment of a degenerate electron gas is obtained. It is shown that in the case of a large number of filled energy levels of the transverse motion of electrons there exist monotonous and oscillating contributions to the magnetic moment. The oscillation part demonstrates de Haas-van Alphen type of oscillation on electron density and Aharonov-Bohm like oscillations on longitudinal magnetic field.

Downloads

Download data is not yet available.

References

S. Iijima. Nature (London), 354, 56 (1991).

R. Saito, G. Dresselhaus, M. Dresselhaus. Physical Properties of Carbon Nanotubes, World Scientific Publ., London (1998), 346 pp.

M. Dresselhaus, G. Dresselhaus, P. Avouris. Carbon Nanotubes. Synthesis, structure, properties and applications, Springer-Verlag, Berlin (2001), 420 pp.

V. Prinz, A. Chehovskiy, V. Preobrazhenski, B. Semyagin and A. Gutakovsky. Nanotechnology, 13, 231 (2002).

I. Chun, V. Verma. Journ. of Cryst. Growth., 310, 235 (2008).

L.I. Magarill, A.V. Chaplik, M.V. Entin. Uspehi Fiz. Nauk, 175, 995 (2005).

L.V. Keldysh. Fizika Tverd. Tela, 4, 2265 (1962).

L. Esaki, R. Tsu. IBM J. Res. Develop., 14, 61 (1970).

A. Fetter. Ann. Phys., 88, 1 (1974).

D. Sarma, J. Quinn. Phys. Rev., B 25, 7603 (1982).

A. Tselis, J. Quinn. Phys. Rev. B, 29, 2021 (1984).

A. Tselis, J. Quinn. Phys. Rev. B, 29, 3318 (1984).

M. Herman. Semiconductor Superlattices, Akademie-Verlag, Berlin (1986), 240 p.

W.-M. Que, G. Kirczenov. Phys. Rev. B 36, 6596 (1987).

K. Golden, G. Kalman. Phys. Rev., B 52, 14719 (1995).

V. Dragunov, I. Neizvestnyi, V. Gridchin. Fundamentals of Nanoelectronics, Logos, Moscow (2006), 258 pp.

C. Yannouleas, E. Bogachek, U. Landman. Phys. Rev., B 53, 10225 (1996).

A.M. Ermolaev, G.I. Rashba, M.A. Solyanik. Fizika Nizk. Temp., 37, 1033 (2011).

V.A. Geiler, V.A. Margulis, A.V. Shorohov. JETP, 115, 1450 (1999).

O.P. Volosnikova, D.V. Zavyalov, S.V. Kruchkov. Proceedings of the XVII International Workshop “Radiational Solid state physics” 645, Sevastopol’, 7 (2007).

I.O. Kulik. JETP letters, 11​​, 407 (1970).

F.G. Bass, A.A. Bulgakov, A.P. Tetervov. High-frequency properties of the semiconductor superlattice, Nauka, Moscow (1989), 288 pp.

E.A. Pashitskiy, Yu.M. Malozovskiy, A.V. Semenov. Ukr. Fizich. Journ., 36, 889 (1991).

L.D. Landau, E.M. Lifshits. Statistical Physics, Nauka, Moscow (1995), 568 pp.

H. Bateman, A. Erdelyi. Higher Transcendental Functions, v. 2, Mc Graw-Hill Book Comp., New York (1953), 296 pp.

N.V. Gleizer, A.M. Ermolaev, G.I. Rashba and M.A. Solyanik. Visnik KhNU, ser. “Physics”, № 962, vip. 15, 15 (2011).
Published
2016-12-28
How to Cite
Rashba, G. I. (2016). The magnetic response of a degenerate electron gas in nanotubes with superlattice. Journal of V. N. Karazin Kharkiv National University. Series Physics, (23), 16-21. Retrieved from https://periodicals.karazin.ua/physics/article/view/7767