Features of the crystal structure and influence of long-term exposure in the air atmosphere on electrical transport of HTSC-compounds of system 1-2-3 (review)

  • L.O. Pashchenko V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine https://orcid.org/0009-0006-3620-2749
  • Junyi Du School of Mathematical Sciences, Luoyang Normal University, Luoyang 471934, China
  • A.O. Komisarov V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine
  • Z.F. Nazirov V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine
  • K.A. Kotvytska V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine https://orcid.org/0000-0001-6629-5102
  • R.V. Vovk V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022, Kharkiv, Ukraine https://orcid.org/0000-0002-9008-6252
Keywords: crystal structure, Y1Ba2Cu3O7-δ single crystals, mechanisms of electrical transport, superconductivity, long aging

Abstract

The problem of the influence of a defect ensemble and long-term exposure in an air atmosphere on various mechanisms of electrical transport of HTSC compounds Re1Ba2Cu3O7-δ (Re = Y or other rare earth ion) is considered. The features of the crystal structure and the influence of structural defects of various morphologies on the electrical conductivity of these compounds in the normal, pseudogap, and superconducting states are discussed. A review of experimental data obtained from studies of the effect of long-term aging in air on various mechanisms of electrical transport of Re1Ba2Cu3O7-δ compounds of various compositions and technological backgrounds is carried out. The effect of long aging on stability of the oxygen subsystem and the electrical resistance of pure and aluminum-doped YBa2Cu3O7-δ single crystals with a given topology of planar defects have been studied. Various theoretical models are discussed on the effect of long-term exposure in an air atmosphere on the electrical conductivity of HTSC compounds of the 1-2-3 system.

Downloads

Download data is not yet available.

References

J.G Bednorz, K.A. Muller. Z. Phys. B., 64, 2, 189 (1986). https://doi:10.1007/BF01303701

J.D. Jorgensen, S. Pei, P. Lightfoor, H. Shi, A.P. Paulikas, B.W. Veal. Physica C., 167, 5–6, 571 (1990). https://doi.org/10.1016/0921-4534(90)90676-6

R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, V.I. Beletskii, A. Chroneos. Physica C., 469, 203 (2009). https://doi.org/10.1016/j.physc.2009.01.011

S. Sadewasser, J. S. Schilling, A.P. Paulikas, B.W. Veal. Physical Review B., 61, 1, 741 (2000). https://doi.org/10.1103/PhysRevB.61.741

R.V. Vovk, N.R. Vovk, G.Y. Khadzhai, I.L. Goulatis, A. Chroneos. Physica B., 422, 33 (2013). https://doi.org/10.1016/j.physb.2013.04.032

Z. Li, H. Wang, N. Yang, X. Jin, L. Shen. Journal of the Chinese Ceramic Society, 18, 6. 555 (1990). https://doi.org/10.1155/2013/931726

B. Martinez, F. Sandiumenge, S. Pinol, N. Vilalta, J. Fontcuberta, X. Obradors. Applied Physics Letters, 66, 772 (1995). https://doi.org/10.1063/1.114089

K. Schlesier, H. Huhtinen, S. Granroth, P. Paturi. Journal of Physics, 234, 1 (2010). https://doi.org/10.1088/1742-6596/234/1/012036

Q.-R. Feng, X. Zhu, S.-Q.Feng, H. Zhang, and Z.-Z.Gan Superconductor Science and Technology, 6, 10, 715 (1993). https://doi.org/10.12693/APhysPolA.118.1047

T. Kemin, H. Meisheng, W. Yening. J. Phys. Condens. Matter, 1, 6. 1049 (1989). https://doi.org/10.1088/0953-8984/1/6/002

G. Lacayc, R. Hermann, G. Kaestener. 192, 207 (1992). https://doi.org/10.48550/arXiv.2209.14636

V.M. Pan, V.L. Svechnikov, V.F. Solovjov. Supercond. Sci. Technol, 5, 707 (1992).

P.H. Kes. Proceedings of the Los Alamos Symposium “Phenomenology and Application of HTSC”, Los Alamos, NM, 22 (1991).

W. Gawalek, W. Schueppel, R. Hergt. Supercond. Sci. Technol, 5, 407 (1992).

В.В. Квардаков, В.А. Соменков, С.Ш. Шильштейн. СФХТ, 5 (4), 630, (1992).

V. Selvamanickam, M. Mironova. S. Son., 208, 238 (1993).

G. Roth, G. Heger, P. Schweiss. Zh. Physica. 152, 4, (1988). https://doi.org/10.1016/0921-4534(88)90091-3

G.D. Chryssikos, E.I. Kamitsos, J.A. Kapoutsis, A.P. Patsis, V. Psycharis, A. Kafoudakis, Mitros C., G. Kallias, E. Gamari-Seale, D. Niarchos. Physica C., 254, 44 (1995).

A.V. Bondarenko, A.A. Prodan, Yu.T. Petrusenko, V.N. Borisenko, F. Dworschak, U. Dedek. Magnetic and superconducting materials, World Scientific, А, 499 (1999). https://doi.org/10.1142/9789812793676_0063

A.V. Bondarenko, A.A. Prodan, Yu.T. Petrusenko, V.N. Borisenko, F. Dworschak, U. Dedek. Phys. Rev. B., 64, 9. 92513 (2001). https://doi.org/10.1103/PhysRevB.64.092513

M.A. Obolensky, A.V. Bondarenko, R.V. Vovk, A.A. Prodan. LTP, 23, 11, 1178 (1997). https://doi.org/10.1063/1.593496

М.О. Оболенский, О.В. Бондаренко, В.І. Білецький, О.В. Самойлов, M.ель-Сіідаві, Д. Ніархос, М. Пісас, Г. Каліас, А.Г. Сіваков., Функціональні матеріали 2, 4, 409 (1995).

R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, A.V. Bondarenko, I.L. Goulatis, A.I. Chroneos. J Mater Sci: Mater in Electron., 18, 811 (2007). https://doi.org/10.1007/s10854-006-9086-3

M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko, N.N. Chebotaev. LTP, 32, 6. 805 (2006). https://doi.org/10.1063/1.2215373

J. Ashkenazi. J. Supercond. Nov. Magn., 24,1281 (2011). https://doi.org/10.1007/s10948-010-0823-8

І.В.Александров. Листи в ЖЕТФ, 48, 8, 449 (1988).

R.B. Van Dover, L.F. Schneemeyer, J.V. Waszczak et al. Phys. Rev. В., 39, 2932 (1989). https://doi.org/10.1103/PhysRevB.39.2932

Д.М. Гінзберг. Фізичні властивості високотемпературних надпровідників, Вища школа, К. (1991), 543 с.

A. Kebede. Phys. Rev. B., 40, 4453 (1991). https://doi.org/10.1103/PhysRevB.40.4453

H.B. Radousky. J.Mater. Res., 7, 7. 1960 (1992). https://doi.org/10.1557/JMR.1992.1917

V.V. Moshchalkov, I.G. Muttik, N.A. Samarin. LTP, 14, 9, 1003 (1988).

M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko. Functional Materials, 13, 196 (2006).

O.L. Solovyov, H.-U. Habermeier, T. Haage. LTP, 28, 1, 98 (2002). https://doi.org/10.1063/1.1449180

O.L. Solovyov, H.-U. Habermeier, T. Haage. LTP, 28, 2, 206 (2002). https://doi.org/10.1063/1.1461921

Ferreira L. Mendonca, P. Pureur, H.A. Borges, P. Lejay. Phys. Rev. B., 69, 212505 (2004). https://doi.org/10.1103/PhysRevB.69.212505

J.B. Bieri, K. Maki, R.S. Thompson. Phys. Rev. B., 44, 9, 4709 (1991). https://doi.org/10.1103/physrevb.44.4709

W.E. Lawrence, S. Doniach. Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto, Japan, edited by E. Kanda, Keigaku, Tokyo, 361 (1970).

А.А. Варламов, Д.В. Ливанов. ЖЕТФ, 98, 2(8), 584 (1990).

L. Reggani, R. Vaglio, A.A. Varlamov. Phys. Rev. B., 44, 17, 9541 (1991). https://doi.org/10.1103/PhysRevB.44.9541

P. Pureur, Costa R. Menegotto, R. Rodrigues, J. Schaf Jr., J.V. Kunzler. Phys. Rev. B., 47, 11420 (1993). https://doi.org/10.1016/0921-4534(94)92191-1

Л.Г. Асламазов, А.І. Ларкін. ФТТ, 10, 4, 1104 (1968).

Д.Д. Прокофьев, М.П. Волков, Ю.А. Бойков. ФТТ, 45, 7, 1168 (2003).

М.В. Садовський. УФН, 171, 5, 539 (2001).

V.M. Krasnov, A. Yurgens, D. Winkler, P. Delsing, T. Claeson. Phys. Rev. Lett, 84, 25, 5860 (2000). https://doi.org/10.1103/PhysRevLett.84.5860

V.M. Krasnov, A.E. Kovalev, A. Yurgens, D. Winkler. Phys. Rev. Lett., 86, 12, 2657 (2001). https://doi.org/10.1103/PhysRevLett.86.2657

B. Fauqué, Y. Sidis, V. Hinkov, S. Pailhès, C.T. Lin, X. Chaud, P. Bourges. Phys. Rev. Lett., 96, 19, 197001 (1-4) (2006). https://doi.org/10.1103/PhysRevLett.96.197001

A.V. Puchkov, P. Fournier, D.N. Basov, T. Timusk, A. Kapitulnik, N.N. Kolesnikov. Phys. Rev. Lett., 77, 3212 (1996). https://doi.org/10.1103/PhysRevLett.77.3212

T. Startseva, T.Timusk, A.V. Puchkov, D.N. Basov, H.A. Mook, M. Okuya, T. Kimura, K. Kishio. Phys. Rev. B., 59, 7184 (1999). https://doi.org/10.1103/PhysRevB.59.7184

K. Gorny, O.M. Vyaselev, J.A. Martindale et al. Phys. Rev. Lett., 82, 1, 177 (1999).

https://doi.org/10.1103/PhysRevLett.82.177

T. Tohyama, S. Maekawa. Phys. Rev. B., 49, 3596 (1994). https://doi.org/10.1103/PhysRevB.49.3596

D.S. Dessau, Z.-X. Shen, D.M. King et al. Phys. Rev., 71, 17, 2781 (1993). https://doi.org/10.1103/PhysRevLett.71.2781

P. Pieri, G.C. Strinati, D. Moroni. Phys. Rev. Lett., 89, 12, 127003 (2002). https://doi.org/10.1103/PhysRevLett.89.127003

E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii. ZhETF Letters., 82, 4. 217 (2005). https://doi.org/10.1134/1.2121814

C.M. Varma. Cond. mat., 0507214 (2005). https://doi.org/10.1103/PhysRevB.73.155113

J.K. Srivastava. Cond. mat., 0504245 (2005). https://doi.org/10.48550/arXiv.cond-mat/0504245

E. Babaev, H. Kleinert. Cond. mat., 9804206 (1998). https://doi.org/10.48550/arXiv.cond-mat/9804206

E. Babaev, H. Kleinert. Phys. Rev. B., 59, 12083 (1999). https://doi.org/10.1103/PhysRevB.59.12083

Cheng Gu Zheng, Yu Weng Zheng. Phys. Rev. B., 72, 104520 (2005). https://doi.org/10.1103/PhysRevB.72.104520

P.W. Anderson. The Theory of Superconductivity in the High Cuprates, Princeton Univ. Press, Princeton NJ., (1997), 352 p.

P.W. Anderson, Z. Zou. Phys. Rev. Lett., 60, 2, 132 (1988). https://doi.org/10.1103/PhysRevLett.60.132

L.A. Boyarsky, S.P. Gabuda, S.G. Kozlova. LTP, 31, 3–4, 405 (2005). https://doi.org/10.1063/1.1884434

R.V. Vovk, M.A. Obolenskii, A.V. Bondarenko, I.L. Goulatis, A.V. Samoilov, A. Chroneos, V.M. Pinto Simoes. Journal of Alloys and Compounds., 464, 1-2, 594 (2008). https://doi.org/10.1016/j.jallcom.2007.10.040

M.Z. Cieplak, G. Xiao, C.L. Chien A. Bakhshai, D. Artymowicz, W. Bryden, J.K. Stalick, J.J. Rhyne. Physical Review B., 42, 10, 6200 (1990). https://doi.org/10.1103/physrevb.42.6200

D. A. Lotnyk, R. V Vovk, M. A. Obolenskii et al. Journal of Low Temperature Physics. 161, 3-4, 387 (2010). https://doi.org/10.1007/s10909-010-0198-z

B. Oh, K. Char, A.D. Kent et al. Physical Review B. 37, 13, 7861 (1988). https://doi.org/10.1103/physrevb.37.7861

A.V. Bondarenko, V.A. Shklovskij, M.A. Obolenskii et al. Physical Review B., 58, 5 2445 (1998). https://doi.org/10.1103/PhysRevB.58.2445

P. Schleger, W. Hardy, B. Yang. Physica C., 176, 261 (1991).

R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy et.al. Journal of Alloys and Compounds, 453, 1-2, 69 (2008). https://doi.org/10.1016/j.jallcom.2006.11.169

M.V. Sadovskii, I.A. Nekrasov, E.Z. Kuchinskii, T. Pruschke, V.I. Anisimov. Physical Review B., 72, 15, (2005). https://doi.org/10.1103/PhysRevB.72.155105

R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, D.A. Lotnyk, K. A. Kotvitskaya. Physica B., 404, 20, 3516 (2009). https://doi.org/10.1016/j.physb.2009.05.047

R.V. Vovk, A.A. Zavgorodniy, M.A. Obolenskii, I.L. Goulatis, A. Chroneos, V.M. Pinto Simoes. Modern Physics Letters B., 24, 22, 2295 (2010). https://doi.org/10.1142/S0217984910024675

A.I. Belyaeva, S.V. Vojtsenya, V.P. Yuriyev, M.A. Obolenskii, A.V. Bondarenko. Solid State Commun., 85, 5, 427 (1993). https://doi.org/10.1016/0038-1098(93)90694-I

L.G. Aslamasov, A.I. Larkin. Physics Letters A., 26, 6, 238 (1968). https://doi.org/10.1016/0375-9601(68)90623-3

R.V. Vovk, N.R. Vovk, O.V. Shekhovtsov, I.L. Goulatis, A. Chroneos. Supercond. Sci. Technol., 26, 8, (2013). https://doi.org/10.1088/0953-2048/26/8/085017

A.L. Solovjov, M.A. Tkachenko, R.V. Vovk, A. Chroneos. Physica C., 501, 24 (2014). https://doi.org/10.1016/j.physc.2014.03.004

R.V. Vovk, G.Ya. Khadzhai, I.L. Goulatis, A. Chroneos. Physica B., 436, 88 (2014). https://doi.org/10.1016/j.physb.2013.11.056

G.A. Levin, T. Stein, C.C. Almasan et al. Phys. Rev. Lett., 80, 841 (1998). https://doi.org/10.1103/PhysRevLett.80.841

P.W. Anderson. Phys. Rev. Lett., 67, 2092 (1991). https://doi.org/10.1103/PhysRevLett.67.2092

R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, A.I. Chroneos. J. Mater. Sci.: Mater. Electron., 20, 858 (2009). https://doi.org/10.1007/s10854-008-9806-y

Z. Li, H. Wang, N. Yang, X. Jin, L. Shen. Journal of the Chinese Ceramic Society., 18, 6, 555 (1990). https://doi.org/10.3390/coatings13091610

K. Schlesier, H. Huhtinen, S. Granroth, P. Paturi. Journal of Physics., 234, 1, (2010). https://doi.org/10.1088/1742-6596/234/1/012036

B. Martinez, F. Sandiumenge, S. Pinol, N. Vilalta, J. Fontcuberta, X. Obradors. Applied Physics Letters, 66, 772 (1995). https://doi.org/10.1063/1.114089

M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu. Phys. Rev. Lett., 58, 9, 908 (1987). https://doi.org/10.1103/PhysRevLett.58.908

A.V. Bondarenko, A.A. Prodan, M.A. Obolenskiǐ, R.V. Vovk, T.R. Arouri. Low Temperature Physics, 27, 5, 339 (2001). https://doi.org/10.1063/1.1374717

R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, A. Chroneos, Е.V. Biletskiy. J. Alloys Compd., 485, 121 (2009). https://doi.org/10.1016/j.jallcom.2009.05.132

G. Lacayo, G. Kastner, and R. Herrmann. Physica C., 192, 1–2, 207 (1992). https://doi.org/10.1016/0921-4534(92)90762-2

M.A. Obolenskii, A.V. Bondarenko, R.V. Vovk, A.A. Prodan. Low Temp. Phys. 23, 882 (1997). https://doi.org/10.1063/1.593496

K. Schlesier, H. Huhtinen, S. Granroth, P. Paturi. Journal of Physics, 234, 1, (2010). https://doi.org/10.1088/1742-6596/234/1/012036

L. Colquitt. J. Appl. Phys., 36, 2454 (1965).

T. Aisaka, M.J. Shimizu. Phys. Soc. Jpn., 28, 646 (1970). https://doi.org/10.1143/JPSJ.28.646

Е.A. Жураковсmкий, В.Ф. Немченко. Кінетичні властивості та електронна структура фаз впровадження “Наукова думка”, K. (1989), 303 с.

B. Leridon, A. Défossez, J. Dumont, J. Lesueur, J. P. Contour. Phys. Rev. Lett., 87, 197007 (2001). https://doi.org/10.1103/PhysRevLett.87.197007

M.R. Presland et al. Physica C., 176, 95 (1991). https://doi.org/10.1016/0921-4534(91)90700-9

B.W. Veal, H. You, A.P. Paulicas et al. Phys. Rev. B., 42, 4770 (1990). https://doi.org/10.1103/PhysRevB.42.4770

K. Widder, A. Zibold, M. Merz et al. Physica C., 232, 12, 82 (1994). https://doi.org/10.1016/0921-4534(94)90296-8

Published
2023-11-30
How to Cite
Pashchenko , L., Du, J., Komisarov, A., Nazirov , Z., Kotvytska, K., & Vovk, R. (2023). Features of the crystal structure and influence of long-term exposure in the air atmosphere on electrical transport of HTSC-compounds of system 1-2-3 (review). Journal of V. N. Karazin Kharkiv National University. Series Physics, (39), 7-25. https://doi.org/10.26565/2222-5617-2023-39-01