Processes of charge, mass and heat transfer in FeNi composite

Keywords: electroconsolidated composite, low temperatures, electrical resistance, thermal conductivity, Hashin-Shtrikman limits, three-phase system, intergranular environment

Abstract

The paper presents a study of the processes of mutual diffusion in the binary system Fe - Ni (obtained by the electrocondensation of nickel and iron powders) by the method of X-ray energy dispersive spectroscopy, as well as the processes of thermal and electrical conductivity in the temperature range of 5-300 K. Well-separated regions of almost pure iron and nickel were revealed . The nickel content, estimated by the concentration dependence of the mutual diffusion coefficient, which determines the kinetics of the process of homogenization of the electroconsolidated sample of the Fe - Ni composite, was ~ 70 at. %. The value of the mutual diffusion coefficient of the electroconsolidated Fe - Ni composite is significantly higher than that of an alloy of a similar composition, which is probably the result of the influence of SPS technology (pressure and current in one direction during consolidation), as well as a significant contribution of grain boundary diffusion mass transfer in the composite. It was established that the electrical and thermal conductivity of the electroconsolidated sample is significantly higher than that of samples of the same composition obtained by melting. It was found that the temperature dependence of the electrical resistance of the electroconsolidated sample in the studied interval of 5-300 K is due to the scattering of electrons on defects and on phonons, and the scattering of electrons on phonons can be approximated with high accuracy by the Bloch-Gruneisen-Wilson ratio. The paper shows that the experimental data on the temperature dependence of the effective electrical resistance and thermal conductivity in the range 4.2-300 K of the electroconsolidated Fe0.50Ni0.50 composite are within the Hashin-Shtrikman limits for the conductivities of a three-phase system. The components of the system are pure Fe and Ni, and the intergranular medium in the form of an alloy with an average composition close to Fe0.50Ni0.50 is considered as the third phase.

Downloads

Download data is not yet available.

References

1. E.A. Perigo, B. Weidenfeller, P. Kollar, and J. Fuzer / Applied Physics Reviews 5, 031301 (2018).
2. O.V. Dobrovolskiy, M. Huth, V.A. Shklovskij and R.V. Vovk, Scientific Reports /7:13740/ DOI:10.1038/s41598-017- 14232-z.
3. A.L. Solovjov, E. V. Petrenko, L. V. Omelchenko, R.V. Vovk, I. L. Goulatis, A. Chroneos / Scientific Reports (2019) 9:9274 https://doi.org/10.1038/s41598-019-45286-w.
4. R.V. Vovk, A.L Solovyov / Low Temperature Physics 44, 81 (2018); https://doi.org/10.1063/1.5020905.
5. O.V. Dobrovolskiy, R. Sachser, T. Brächer, T. Fischer,
V.V. Kruglyak, R.V. Vovk, V.A. Shklovskij, M. Huth, B. Hillebrands, and A.V. Chumak / Nature Physics 15, 477-482 (2019).
6. M.A. Hadi, R.V. Vovk and A. Chroneos // Journal of Materials Science: Materials in Electronics (2016) 27: 11925-11933 DOI 10.1007/s10854-016-5338-z.
7. O.V. Dobrovolskiy, V.M. Bevz, M.Yu. Mikhailov, O.I. Yuzephovich, V.A. Shklovskij, R.V. Vovk, M.I. Tsindlekht,R. Sachser, and M. Huth / Nature Communications (2018) 9:4927 DOI:10.1038/s41467-018-07256-0.
8. A.L. Solovjov, L.V. Omelchenko, E.V. Petrenko, R.V. Vovk,
V.V Khotkevych, and A. Chroneos / Scientific Reports (2019) 9:20424. https://doi.org/10.1038/s41598-019-55959-
9. N. Kuganathan, A. Kordatos, M.E. Fitzpatrick, R.V. Vovk, A. Chroneos // Solid State Ionics (2018) 327:93-98.
10. N. Kuganathan, P. Iyngaran, R. Vovk, and A. Chroneos / Scientific Reports (2019) 9:4394 https:doi.org/10.1038/ s41598-019-40878-y.
11. Li, A., Zhu, Z., Liu, Y., & Hu, J. Materials Research Bulletin, 110845 (2020). https://doi.org/10.1016/j. materresbull.2020.110845
12. Nagayama, T., Yamamoto, T., & Nakamura, T. (2017, May). 37‐3: Low Thermal Expansion and Fine‐Pitch Metal Masks Fabricated via Invar Fe‐Ni Alloy Electroforming for Large Fine‐Pitch OLED Displays. In SID Symposium Digest of Technical Papers (Vol. 48, No. 1, pp. 527-530). https://doi. org/10.1002/sdtp.11692
13. Liu, J., Liu, H., Tian, X., Yang, H., & Hao, J. Journal of Alloys and Compounds, 822, 153708 (2020). https://doi. org/10.1016/j.jallcom.2020.153708
14. Chen, T., Yu, J., Ma, C., Bikane, K., & Sun, L. Chemosphere, 248, 125964 (2020).. https://doi.org/10.1016/j. chemosphere.2020.125964
15. Cai, N., Yang, H., Zhang, X., Xia, S., Yao, D., Bartocci, P., ... & Williams, P. T. Waste Management, 109, 119-126 (2020).. https://doi.org/10.1016/j.wasman.2020.05.003
16. Zhang, Z., Cong, L., Yu, Z., Qu, L., & Huang, W. Materials Today Energy, 16, 100387 (2020). https://doi.org/10.1016/j. mtener.2020.100387
17. Wu, Y., Yi, Y., Sun, Z., Sun, H., Guo, T., Zhang, M., ... & Sun, J. Chemical Engineering Journal, 390, 124515 (2020). https://doi.org/10.1016/j.cej.2020.124515
18. Fan, A., Qin, C., Zhang, X., Yang, J., Ge, J., Wang, S., ... & Dai, X. Journal of Materials Chemistry A, 7(42), 24347- 24355 (2019). https://doi.org/10.1039/C9TA08594G.
19. Zhang, G., Wang, G., Liu, H., Qu, J., & Li, J. Nano Energy, 43, 359-367 (2018). https://doi.org/10.1016/j. nanoen.2017.11.035.
20. Ji, L., Zhang, L., Yang, X., Zhu, X., & Chen, L. Dalton Transactions, 49(13), 4146-4154 (2020). https://doi. org/10.1039/D0DT00230E.
21. Gao, S., Wang, H., Wang, X., Liu, H., He, T., Wang, Y., ... & Yan, M. Journal of Alloys and Compounds, 154631 (2020). https://doi.org/10.1016/j.jallcom.2020.154631
22. Sarkar, S., Biswas, A., Purkait, T., Das, M., Kamboj, N., & Dey, R. S. Inorganic Chemistry, 59(7), 5194-5205 (2020). https://doi.org/10.1021/acs.inorgchem.0c00446
23. Zhu, X., Zhang, D., Chen, C. J., Zhang, Q., Liu, R. S., Xia, Z., ... & Lu, X. Nano Energy, 71, 104597 (2020). https://doi. org/10.1016/j.nanoen.2020.104597
24. Goto, S., Kura, H., Watanabe, E., Hayashi, Y., Yanagihara, H., Shimada, Y., ... & Kita, E. Scientific reports, 7(1), 1-7
(2017). https://doi.org/10.1038/s41598-017-13562-2
25. Kurichenko, V. L., Karpenkov, D. Y., Karpenkov, A. Y., Lyakhova, M. B., & Khovaylo, V. V. Journal of Magnetism and Magnetic Materials, 470, 33-37 (2019).. https://doi. org/10.1016/j.jmmm.2017.11.040
26. Bernard F., Le Gallet S., Spinassou N., Paris S., Gaffet E., Woolman J.N., and Munir Z.A. Science of Sintering. 2004,
№ 36, р. 155-164.
27. Скороход В.В., Рагуля А.В. Порошковая металлургия. 1994, № 3-4. с. 3-10. (in Russian).
28. Bourell D.L., Groza J.R. Powder Metallurgy. ASM Handbook. 7, 504 (1998).
29. Гегузин Я.Е. Физика спекания. 2-е изд., перераб. и доп. – М.: Наука. – 1984. – 312 с. (in Russian).
30. V.Y. Kodash, J.R. Groza, K.C. Cho, B.R. Klotz, R.J. Dowding. Materials Science and Engineering A 385 (2004) 367–371. doi:10.1016/j.msea.2004.06.075
31. Aslan E, Camuşcu N. and Birgören B. Materials & Design. 28, Is. 5, 1618 (2007). https://doi.org/10.1016/j. matdes.2006.02.006
32. Бокштейн Б.С. Диффузия в металлах. – М.: Металлургия.
– 1978. – 248 с. (in Russian).
33. Kohn A., Levasseur J., Philibert J., and Wanin M. Acta Met., 18, 163 (1970). https://doi.org/10.1016/0001- 6160(70)90080-5
34. Угасте Ю.Э., Коденцов А.А. и ван Лоо Ф. The Physics of Metals and Metallography, 88(6), 88-94 (1999) (in Russian). https://www.researchgate.net/publication/279625762
35. Badia, M., “Interdiffusion of Fe and the Transition Metals,” (in French) Ph.D. Thesis, Univ. Nancy, France, (1969), 85 pp.
36. J.I. Goldstein, R.E. Hanneman and R.E. Ogilvie, Trans. metall. Soc. AMIE, 1965, V. 233, p. 812.
37. Berman R. Thermal Conduction of Solids. Clarendon Press. Oxford. 1976.
38. Ho, C.Y. et al. Electrical resistivity of ten selected binary alloy systems. J. Phys. Chem. Ref. Data 12, 183 (1983).
39. Ho, C.Y., Ackerman, M.W., Wu, K.Y., Oh, S.G. & Havill,
T.N. Thermal conductivity of ten selected binary alloy systems. J. Phys. Chem. Ref. Data 7, 959–1177 (1978).
40. А. М. Ермолаев, Б. А. Мерисов, В. И. Хоткевич, ФММ, 24:1104 (1967).
41. Б.А. Мерисов, Г.Я. Хаджай, П.Н. Вьюгов, О.Е. Кожевников. Metallofiz. Noveishie Tekhnol. 33, 301 (2011).
42. В.А. Перваков. Низкотемпературная теплопроводность металлов с дефектами. Харьков: Гос. спец. изд-во
«Основа». 1993.
43. Ю. Каган, А. П. Жернов, ЖЭТФ, 50:1107 (1966).
44. А. М. Ермолаев, ФММ, 23: 813 (1967).
45. Jin, K., Sales, B., Stocks, G. et al. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci Rep 6, 20159 (2016). https://doi.org/10.1038/srep2015946. Rossiter P.L. The Electrical Resistivity of Metals and Alloys. Cambridge UniversityPress, 1987.
47. Z. Hashin and S. Shtrikman. A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys., 33:3125–3131 (1962).
48. Wilson, A. H. The electrical conductivity of the transition metals. Proc. Roy. Soc. (London) A 167, 580–593 (1938).
49. L. Colquitt, Jr. Electrical and Thermal Resistivities of the Nonmagnetic Transition Metals with a Two-Band Model. Journal of applied Physics V.36 N.8. 1965.
50. G.W. Webb. Low-Temperature Electrical Resistivity of Pure Niobium. Phys. Rev. 181, 1127 (1969).
51. Banerjee, S. & Raychaudhuri, A. K. Electrical resistivities
of γ-phase FexNi80−xCr20 alloys. Phys. Rev. B 50, 8195–8206 (1994).
52. Kao, Y. et al. Electrical, magnetic and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloy. Comp. 509, 1607–1614 (2011).
53. О.А. Гавренко, Б.А. Мерисов, Г.Я. Хаджай. Металлофизика, 1995, т. 17, N 11. C. 51 - 53. (Met. Phys. Adv. Tech., 1996, Vol. 15, pp. 1215-1219
54. J.M. Ziman. Electrons and Phonons. The Theory of Transport Phenomena in Solids. Oxford at the Clarendon Press, 1960.
55. N.V. Volkenshtein, V.P. Dyakina, and V.E. Startsev. Scattering Mechanisms of Conduction Electrons in Transition Metals at Low Temperatures. Phys. Stat. Sol. (b) 57, 9 (1973).
56. J.-F. Lin and J.P. Bird, L. Rotkina, A. Sergeev and V. Mitin. Large effects due to electron–phonon-impurity interference in the resistivity of Pt/C-Ga composite nanowires. App. Phys. Lett., V. 84, № 19, 3828-3830 (2004).
57. S.S. Yeh, J.J. Lin, Jing Xiunian, Zhang Dianlin. Electron-
phonon-impurity interference effect in disordered Au56Pd44 and IrO2 thick films. Phys. Rev. B 72, 024204 (2005).
58. M.Yu. Reizer and A.V. Sergeev. The effect of the electron- phonon interaction of the conductivity of impure metals. Zh. Eksp. Teor. Fiz. 92, 2291-2304 (1987) [Sov. Phys. JETP 65 (6), 1291- 1298 (1987)]
59. Y. Tanji. Debye Temperature and Lattice Deviation of Fe-Ni (fcc) Alloys. Journal of the Physical Society of Japan, V. 30,
№ 1, 133-138 (1971).
60. Bernard F., Le Gallet S., Spinassou N., Paris S., Gaffet E., Woolman J.N., and Munir Z.A. Science of Sintering. 2004,
№ 36, р. 155-164.
61. Bourell D.L., Groza J.R. Powder Metallurgy. ASM Handbook. 7, 504 (1998).
62. Aslan E, Camuşcu N. and Birgören B. Materials & Design. 28, Is. 5, 1618 (2007). https://doi.org/10.1016/j. matdes.2006.02.006
63. Z. Hashin, S. Shtrikman. A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials.Journal of Applied Physics 33, № 10, p. 3125- 3131 (1962); https://doi.org/10.1063/1.1728579
64. P.L. Rossiter. The electrical resistivity of metals andalloys. Cambridge University Press, 1987. doi:10.1017/ CBO9780511600289
65. Г. Хаджай, С. Вовк, Р. Вовк, Э. Геворкян, Н. Зубенко, М. Кислица, В. Чишкала, A. Feher, P. Kollar, J. Fuzer. Электро- и теплопроводность FeNi при низких температурах. ФНТ, 46, № 9, с. 1110-1114 (2020).
66. Ho, C.Y. et al. Electrical resistivity of ten selected binary alloy systems. J. Phys. Chem. Ref. Data 12, 183 (1983).
67. Ho, C.Y., Ackerman, M.W., Wu, K.Y., Oh, S.G. & Havill,
T.N. Thermal conductivity of ten selected binary alloy systems. J. Phys. Chem. Ref. Data 7, 959–1177 (1978).
68. Jin, K., Sales, B., Stocks, G. et al. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci Rep 6, 20159 (2016). https://doi.org/10.1038/srep20159
69. V.V. Bogdanov, R.V. Vovk, S.V. Dukarov, M.V. Kislitsa, S.I. Petrushenko, V.N. Sukhov, G.Ya. Khadzhai, Y.L. Goulatis,
S.R. Vovk, E.S. Gevorkyan, A.Feher, P. Kollar, J. Fuzer, J.N.Latosińska / Electron microscopic study of interdiffusion in equiatomic Fe-Ni composite // Acta Physica Polonica N1, vol.139 (2021) p.p.62-65.
Published
2022-11-04
How to Cite
Pashchenko, L., Bogdanov, V., Vovk, R., Dukarov, S., Kyslytsia, M., Petrushenko, S., Sukhov, V., Hadzhai, G., Gulatis, I., Gevorkyan, E., Vovk, S., Feher, A., Du, J., & Latosińska, J. (2022). Processes of charge, mass and heat transfer in FeNi composite. Journal of V. N. Karazin Kharkiv National University. Series Physics, (37), 7-20. https://doi.org/10.26565/2222-5617-2022-37-01