Computer simulations of hydrostatic pressure influence on screw <a> dislocation slip in Mg

  • A. Ostapovets CEITEC-IPM, Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, Brno, Czech Republic http://orcid.org/0000-0002-3781-4716
  • O. Vatazhuk B. Verkin Institute for Low Temperature Physics and Engineering NAS of Ukraine, 47 Nauki Ave., 61103 Kharkov, Ukraine http://orcid.org/0000-0003-0431-9660
Keywords: defects; metals and alloys; simulation and modeling; dislocations; hcp hydrostatic pressure, defects, metals and alloys, simulation and modeling, dislocations, hcp, hydrostatic pressure

Abstract

Atomistic modeling of hydrostatic pressure influence on critical resolved shear stress was performed for glide of screw <a> dislocation in magnesium. It was found that application of pressure can change the resolved critical stress for basal and prismatic slip. The effect is dependent on dislocation core structure. It can be connected to the pressure dependence transient dilatation of the dislocation core.

Downloads

Download data is not yet available.

References

M.M. Avedesian, H. Baker. Magnesium and Magnesium Alloys, (ASM International, Materials Park, OH, 1999), 350 p.

J.W. Christian, S. Mahajan. Prog. Mater. Sci., 39, 1 (1995).

A. Chapius, J.H. Driver. Acta Mater., 59, 1986 (2011).

H. Asgari, J.A. Szpunar, A.G. Odeshi. Mater. Des.,61, 26 (2014).

M.A. Kumar, I.J. Beyerlein, C.N. Tome. J. Alloys Comp., 695, 1488 (2016).

S. Biswas, S.S. Dhinwal, S. Suwas. Acta Mater., 58, 3247 (2010).

P. Molnar, A. Jager. Philos. Mag., 93, 3612 (2013).

R.Z. Valiev, T.G. Langdon, Progr. Mater. Sci., 51, 881 (2006).

J. Horky, A. Ghaffar, K. Werbach, et. al. Materials, 12, 2460 (2019).

C.F. Gu, L.S. Toth, D.P. Field, J.J. Fundenberger, Y.D. Zhang. Acta Mater., 61, 3027 (2013).

F. Kang, J.Q. Liu, J.T. Wang, X. Zhao. Scripta Mater., 61, 844 (2009).

F. Kang, J.Q. Liu, J.T. Wang, et. al. Int. J. Mat. Res., 100, 1686 (2009).

V.V. Stolyarov, R. Lapovok, I.G. Brodova, P.F. Thomson. Mater. Sci. Eng. A, 357, 159 (2003).

F.R.N. Nabarro, T.R. Duncan. Can. J. Phys., 45, 939 (1967).

M.S. Duesberry. Proc. Roy. Soc. Lond. A, 392, 145 (1984).

R. Gröger. Phil Mag., 94, 2021 (2014).

J.A. Barendreght Jr., W.N. Sharpe. J. Mech. Phys. Solids, 21, 113 (1973).

A. Ostapovets, O. Vatazhuk. Comp. Mater. Sci., 142, 261 (2018).

S. Yoshikawa, D. Matsunaka. Mater. Trans., 61, 127 (2020).

V.V. Bulatov, O. Richmond, M.V. Glazov. Acta mater., 47, 3507 (1999).

Y.-M. Kim, N. J. Kim, B.-J. Lee. CALPHAD, 33, 650 (2009).

S. Plimpton. J. Comp. Phys., 117, 1 (1995).

A. Stukowski. Modell. Simul. Mater. Sci. Eng., 18, 015012 (2009).

J.A. Yasi, T. Nogaret, D.R. Trinkle, et. al. Modell. Simul. Mater. Sci. Eng., 17, 055012 (2009).

Z. Wu, M. Francis, W. Curtin. Model. Simul. Mater. Sci. Eng., 23, 015004 (2015).

X.Y. Liu, J.B. Adams, F. Ercolessi, J.A. Moriarty. Model. Simul. Mater. Sci. Eng., 4, 293 (1996).

I. Shin, E.A. Carter. Int. J. Plasticity, 60, 58 (2014).

A. Ostapovets, O. Vatazhuk. Low. Temp. Phys., 43, 421 (2017).

C.D. Barrett, L.R. Carino. Integrating Materials and Manufacturing Innovation, 5, 9 (2016).

J.P. Hirth, J. Lothe. Theory of dislocations, New York, McGraw-Hill, 1968, p.780.

D.Y. Sun, M.I. Mendelev, C.A. Becker, et. al. M. Asta, Phys. Rev. B, 73, 024116 (2006).

Published
2020-12-30
How to Cite
Ostapovets, A., & Vatazhuk, O. (2020). Computer simulations of hydrostatic pressure influence on screw <a&gt; dislocation slip in Mg. Journal of V. N. Karazin Kharkiv National University. Series Physics, (33), 71-76. https://doi.org/10.26565/2222-5617-2020-33-04