The low-temperature mechanical properties of the Fe40Mn40Co10Cr10 high-entropy alloy, the ductility of which is induced by twinning

  • T. V. Hryhorova B. Verkin Institute for Low Temperature Physics and Engineering NAS of Ukraine, 47 Nauki Ave., 61103 Kharkov, Ukraine http://orcid.org/0000-0002-3585-9187
  • S. E. Shumilin B. Verkin Institute for Low Temperature Physics and Engineering NAS of Ukraine, 47 Nauki Ave., 61103 Kharkov, Ukraine http://orcid.org/0000-0002-5664-6228
  • Yu. O. Shapovalov B. Verkin Institute for Low Temperature Physics and Engineering NAS of Ukraine, 47 Nauki Ave., 61103 Kharkov, Ukraine http://orcid.org/0000-0001-9274-7352
  • Yu. O. Semerenko B. Verkin Institute for Low Temperature Physics and Engineering NAS of Ukraine, 47 Nauki Ave., 61103 Kharkov, Ukraine http://orcid.org/0000-0003-2268-0572
  • O. D. Tabachnikova B. Verkin Institute for Low Temperature Physics and Engineering NAS of Ukraine, 47 Nauki Ave., 61103 Kharkov, Ukraine http://orcid.org/0000-0002-1866-7941
  • M. A. Tikhonovsky National Science Center Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., Kharkiv, 61108, Ukraine http://orcid.org/0000-0001-5889-0366
  • A. S. Tortika National Science Center Kharkov Institute of Physics and Technology, 1, Akademicheskaya St., Kharkiv, 61108, Ukraine http://orcid.org/0000-0001-8430-8587
  • M. I. Zehetbauer University of Vienna, Boltzmanngasse 5, Vienna A-1090, Austria
  • E. Schafler University of Vienna, Boltzmanngasse 5, Vienna A-1090, Austria
Keywords: high-entropy alloy, plasticity, strength, cryogenic temperatures

Abstract

In this work, we studied the low-temperature plasticity, elastic and dissipative characteristics, as well as the microstructural evolution of the Fe40Mn40Co10Cr10 high-entropy alloy in a wide temperature range of 300 - 0.5 K. The temperature dependences of yield strength, strain hardening, strength and ductility, as well as acoustic absorption and dynamic Young's modulus are obtained. It was found that the structure of Fe40Mn40Co10Cr10 alloy in the initial state is single-phase with fcc lattice, and in the deformed state at low temperatures it becomes two-phase due to the deformation-induced phase transition. In addition, EBSD analysis of the alloy structure revealed a change in grain morphology and the appearance of twin dislocations after plastic deformation at all investigatedtemperatures. Acoustic studies showed that the transition from the initial to the deformed state changes the character of the temperature dependence of the dynamic Young's modulus from almost linear to exponential, and reduces the absolute values.
The Fe40Mn40Co10Cr10 alloy has excellent strength and ductility at a high strain hardening rate, which is explained by the significant contribution of the twinning process. With a decrease in temperature from 300 to 4.2 K, a strong temperature dependence of the yield strength is observed, which indicates the thermal activation of the nature of the plastic deformation of the alloys in this temperature range.
In the temperature range of 0.5-4.2 K, an anomaly of the yield strength was observed, namely a decrease in the value of the yield strength with decreasing temperature from 4.2 K to 0.5 K. The anomalous dependence of the yield strength is due to a change in the mechanism of overcoming local barriers from thermoactivated to inertial one, when part of the local obstacles is overcome by dislocations without activation. This leads to a decrease in yield strength with decreasing temperature. At a temperature of 4.2 K and below, the smooth nature of the plastic deformation changes from smooth to serrated. The jumps begin immediately after the yield
strength and gradually increase from 40 MPa to ~ 160 MPa.
The results obtained are important for practical applications of high-entropy alloys at low temperatures.

Downloads

Download data is not yet available.

References

W. Yeh, S.K. Chen, S.J. Lіn, J.Y. Gan, T.S. Chіn, T.T. Shun, C.H. Tsau, S.Y. Chang. Adv. Eng. Mater., 6, 299 (2004).

B. Cantor, І.T.H. Chang, P. Knіght, A.J.B. Vіncent. Mater Scі Eng, A 375-377, 213 (2004).

A. Galі, E.P. George. Іntermetallіcs, 39, 74 (2013).

F. Otto, A. Dlouhy, Ch. Somsen, H. Beі, G. Eggeler et al. Acta Mater. 61 5743, (2013).

Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu. Progr. Mater. Sci., 61, 1 (2014).

A.D. Pogrebnoak, I.V. Yakushchenko, A.A. Bagdasaryan, O.V. Bondar, R. Krause-Rehberg, G. Abadias, P. Chartier, K. Oyoshi, Y. Takeda, V.M. Beresnev, O.V. Sobol. Mater. Chem. Phys., 147, 1079 (2014).

M. Naeem, H. He, F. Zhang et al. Sci. Adv., 2020.

B. Gludovatz, E.P. George, R.O. Ritchie. JOM, 67, 2262 (2015).

D.A. Porter and K.E. Easterling. (Chapman & Hall, London, 1992).

Z. Li, D. Raabe. JOM, 69, 11 (2017).

Z. Wu, H. Bei, G.M. Pharr, E.P. George. Acta Mater., 81, 428 (2014).

G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George. Acta Mater., 128, 292 (2017).

E.D. Tabachnikova, M.A. Laktionova, Yu.A. Semerenko, S.E. Shumilin, and A.V. Podolskiy. Low Temp. Phys., 43, 1108 (2017); DOI: 10.1063/1.5004457.

Yu.A. Semerenko. Prybory i tekhnyka eksperymenta, 48 (3), 162 (2005). (Ю.А. Семеренко. Приборы и техника эксперимента, 48 (3), 162 (2005)) [in Russian]

Yu.A. Semerenko. Instruments and Experimental Techniques, 48, 608 (2005); DOI: 10.1007/s10786-005-0107-x

V.D. Natsik, Yu.A. Semerenko. Low Temp. Phys., 45, 551 (2019); DOI: 10.1063/1.5097366.

Yu.A. Semerenko, V.D. Natsik. Low Temp. Phys., 46, 78 (2020); DOI: 10.1063/10.0000367

V.V. Pustovalov. Low Temp. Phys., 34, 683 (2008).

V.V. Pustovalov. Low Temp. Phys. 26, 375 (2000).

V.V. Pustovalov, V.S. Fomenko. (Naukova dumka, Kiev, 2012).

B. Obst and A. Nyіlas. Mater. Scі. Engіn., A 137, 141 (1991).

B. Skoczen’, J. Bіelskі, S. Sgobba, and D. Marcіnek. Іntern. J. Plastіcіty, 26, 1659 (2010).

V.S. Bobrov, M.A. Lebedkin. Physics Of The Solid State, 35, 1881 (1993).

V.S. Bobrov, M.A. Lebedkin. Physics Of The Solid State, 31, 120 (1989).

M. Komarasamy, N. Kumar, Z. Tang, R.S. Mіshra & P.K. Lіaw. Mater. Res. Lett., 3 (1), 30 (2015).

V.I. Trefilov, Deformation hardening and destruction of polycrystalline metals, (Naukova dumka, Kiev, 1987).

E.F. Dudarev. (TSU, Tomsk, 1988).

R. Honicomb. Plastic deformation (Мir, Moscow, 1972).

S. Asgarі, E. El-Danaf, S.R. Kalіdіndі, R.D. Doherty. Met. Mater Trans A., 28, 1781 (1997).

Published
2020-07-29
How to Cite
Hryhorova, T. V., Shumilin, S. E., Shapovalov, Y. O., Semerenko, Y. O., Tabachnikova, O. D., Tikhonovsky, M. A., Tortika, A. S., Zehetbauer, M. I., & Schafler, E. (2020). The low-temperature mechanical properties of the Fe40Mn40Co10Cr10 high-entropy alloy, the ductility of which is induced by twinning. Journal of V. N. Karazin Kharkiv National University. Series Physics, (32), 41-48. https://doi.org/10.26565/2222-5617-2020-32-05