Separate detection of ionizing radiation with different specific energy losses by organic heterostructured scintillators
Abstract
Molecular organic scintillation materials are the most effective objects for creating systems that detect the kinds of radiation, that the most harmful to humans (alpha particles, fast neutrons, etc.). In addition, organic crystals and liquids are capable to separate these types of radiation from photons of background gamma radiation. In these scintillators, ionizing radiation generates two types of luminescent response– prompt and delayed radioluminescence Ionizing radiation with a high specific energy loss dE/dx, i.e. energy loss E per unit path length x, generate a scintillation pulse in these media with a high proportion of the slow component. Recently, new types of scintillators have been developed, namely, heterogeneous organic scintillators containing single-crystal scintillation grains that can be combined by hot pressing sintering (polycrystals or Van der Waals ceramics) or can be incorporated into a transparent gel composition (composite scintillators). the ability of heterogeneous organic scintillators to separate signals from radiation with different dE/dx and the physical basis of this process in heterogeneous scintillation materials remain one of the urgent, unexplored problems.
This work presents the results of the study of the form of scintillation pulse shapes for the samples of organic single crystals, polycrystals and compositional scintillators based on stilbene in comparison with the same results obtained for p-terphenyl and anthracene for various types of ionizing radiation excitations. The peculiarities of the influence of the triplet-triplet annihilation process on the formation of a slow component of the radioluminescence pulse in these systems have being studied. We found that the ability of new types of organic heterogeneous materials (polycrystals and composite scintillators) to the separate registration of ionizing radiation in the shape of the scintillation pulse is close to the corresponding values that characterize this ability of structurally perfect single crystals.
Downloads
References
J.B. Birks. The Theory and Practice of Scintillation Counting, Pergamon Press, London, (1967), 662 p.
M. Pope, Ch. Swenberg. Electronic processes in organic crystals, Clarendon Press, Oxford (1982), 821 p.
N.Z. Galunov, V.P. Seminozhenko. Radiolyuminestsentsiya organicheskih kondensirovannyih sred. Teoriya i primenenie. 2-e izdanie, Naukova dumka, Kiev (2015), 464 s. [in Russian].
N.Z. Galunov, N.L. Karavaeva, O.A. Tarasenko. M. Korzik, A. Gektin (Eds.) Engineering of Scintillation Materials and Radiation Technologies, Springer Proceedings in Physics 200, Springer. International Publishing AG (2017), p.195.
J. Iwanowska, L. Swiderski, M. Moszynski, T. Szczesniak, P. Sibczynski, N.Z. Galunov, N.L. Karavaeva. J. Instrum., (2011), v.6, P07007.
S.K. Lee, J.B. Son, K.H. Jo, B.H. Kang, G.D. Kim, H. Seo, S.H. Park, N.Z. Galunov, Y.K. Kim. J. Nucl. Sci. Technol., (2014), v.51, p.37.
I.F. Khromiuk. Tezy XV Vseukrainskoi studentskoi konferentsii "Fizyka ta naukovo-tekhnichnyi prohres", 22-24 kvitnia 2019 r., Kharkiv, Kharkivskyi natsionalnyi universytet imeni V.N. Karazina, (2019), s.22. [in Ukrainian]
I.F. Khromiuk. Tezy Mizhnarodnoi shkoly-seminaru dlia molodykh vchenykh «Funktsionalni materialy dlia tekhnichnykh ta biomedychnykh zastosuvan», 09-12 veresnia 2019 r., selyshche Koropove, Zmiivskyi raion, Kharkivska oblast, Ukraina (2019), s.10.
O. Tarasenko, N. Galunov, N. Karavaeva, I. Lazarev, V. Panikarskaya. Radiat. Meas. (2013), v.58, p.61.
L.M. Bollinger, G.E. Thomas. Rev. Sci. Instrum., (1961), v.32, p.1044.
N.Z. Galunov, E.V. Martynenko. Radiat. Meas. (2007), v.42, p.715.