Dislocation-kinetic approach to tensile stress-strain curve calculation for “flat” aluminum polycrystals

  • Evgeniy Badiyan V.N. Karazin Kharkiv National University, Svoboda Sq. 4, Kharkiv, 61022 https://orcid.org/0000-0002-4623-7180
  • Alla Tonkopryad
  • Oleg Shekhovtsov V.N. Karazin Kharkiv National University, Svoboda Sq. 4, Kharkiv, 61022
Keywords: strain-hardening, tensile stress-strain curve, kinetic equation for the dislocation density

Abstract

The dislocation-kinetic approach is used for the stress-strain curve calculation for "flat" pure polycrystals of metals with average grain sizes d in the range from 10 to 500 μm and a thickness D > 2d which were stressed in tension at a constant strain rate and moderate temperatures. The strain-hardening of "flat" pure aluminum polycrystals has been theoretically studied on the basis of the solution of the kinetic equation for the dislocation density. The effects of reduction in the conditional yield strength and strain-hardening coefficient and deviation from the Hall–Petch relation with decreasing specimen thickness have been found.

Downloads

Download data is not yet available.

References

Kocks U.F., Mecking H. Prog Mater Sci. 48, 171 (2003).

Malygin G.A. Fizika Tverd. Tela, 49, V. 6, 961 (2007).

Malygin G.A. Fizika Tverd. Tela, 54, V. 3, 523 (2012).

Malygin G.A. Fizika Tverd. Tela, 35, V. 5, 1328 (1993).

Malygin G.A. Fizika Tverd. Tela, 35, V. 6, 1698 (1993).

Malygin G.A. Fizika Tverd. Tela, 52, V.1, 48 (2010).

Malygin G.A. Uspekhi Fiz. Nauk, 181, V. 11, 1129 (2011).

Greer J.R., Oliver W.C., Nix W.D. Acta Mater., 53,1821 (2005).

Greer J.R., Nix W.D. Phys. Rev. B, 73, 245410 (2006).

Hall E.O. Proc. Phys. Soc., 64B, 747 (1951).

Petch N.J. Journ. Iron Steel Inst., 173, 25 (1953).

Published
2019-09-10
How to Cite
Badiyan, E., Tonkopryad, A., & Shekhovtsov, O. (2019). Dislocation-kinetic approach to tensile stress-strain curve calculation for “flat” aluminum polycrystals. Journal of V. N. Karazin Kharkiv National University. Series Physics, (29), 6-10. https://doi.org/10.26565/2222-5617-2018-29-01