Quantification and physics of cold plasma treatment of organic liquid surfaces

  • Edward Bormashenko Ariel University, Engineering Faculty, Chemical Engineering, Biotechnology and Materials Department, 40700, P.O.B. 3, Ariel, Israel https://orcid.org/0000-0003-1356-2486
  • Victor Multanen Department of Mechanical and Aerospace Engineering within the College of Engineering at The Ohio State University
  • Gilad Chaniel Ariel University, Physics Department, 40700, P.O.B. 3, Ariel, Israel
  • Roman Grynyov Ariel University, Physics Department, 40700, P.O.B. 3, Ariel, Israel
  • Evgeny Shulzinger Ariel University, Engineering Faculty, Chemical Engineering, Biotechnology and Materials Department, 40700, P.O.B. 3, Ariel, Israel
  • Roman Pogreb Ariel University, Physics Department, 40700, P.O.B. 3, Ariel, Israel
  • Hadas Aharoni Ariel University, Engineering Faculty, Chemical Engineering, Biotechnology and Materials Department, 40700, P.O.B. 3, Ariel, Israel
  • Yakir Nagar Ariel University, Department of Electrical Engineering, 40700, P.O.B. 3, Ariel, Israel
Keywords: cold plasma, silicone oils, spreading parameter, change in the surface energy, hydrophilization, electret.

Abstract

Plasma treatment increases the surface energy of condensed phases: solids and liquids. Two independent methods of the quantification of the influence imposed by a cold radiofrequency air plasma treatment on the surface properties of silicone oils (polydimethylsiloxane) of various molecular masses and castor oil are introduced. Under the first method the water droplet coated by oils was exposed to the cold air radiofrequency plasma, resulting in an increase  of oil/air surface energy. An expression relating the oil/air surface energy to the apparent contact angle of the water droplet coated with oil was derived.           The apparent contact angle was established experimentally. Calculation of the oil/air surface energy and spreading parameter was carried out for the various plasma-treated silicone and castor oils. The second method is based on the measurement of the electret response of the plasma-treated liquids.

Downloads

Download data is not yet available.

References

1. a) H. K. Yasuda, J. Wiley & Sons, New York (1984);
b) M. Strobel, C. S. Lyons, K. L. Mittal (Eds), VSP, Zeist, The Netherlands (1994);
c) M. Thomas, K. L. Mittal (Eds),Wiley, Beverly, USA (2013);
d) M. Lehocky, H. Drnovska, B. Lapcikova, A. M. Barros-Timmons, T. Trindade, M.Zembala, L. Lapcik Jr., Colloids Surf., A., 222, 125 (2003);
d) E. C. Preedy, E. Brousseau, S. L. Evans, S. Perni, P.Prokopovich, Colloids Surf. A., 460, 83 (2014);
e) R. M. Cámara, E. Crespo, R. Portela, S. Suárezd, L. Bautista, F. Gutiérrez-Martín, B. Sánchez, Catalysis Today., 230, 145 (2014).
2. a) E. Occhiello, M. Morra, F. Garbassi, D. Johnson, P.Humphrey, Appl. Surf. Sci. 47, 235 (1991);
b) R. M. France, R. D. Short, Langmuir, 14, 4827 (1998);
c) R. M. France, R.D. Short, J. Chem. Soc., Faraday Trans., 93, 3173 (1997);
d) S. Wild, L. L. Kesmodel, J. Vac. Sci. Technol. A., 19, 856(2001);
e) E. Kondoh, T. Asano, A. Nakashima M. Komatu,J. Vac. Sci. Technol. B., 18, 1276 (2000);
f) J. P. Fernández-Blázquez, D. Fell, El. Bonaccurso, A. del Campo, J. Colloid Interface Sci., 357, 234 (2011);
g) D. Hegemann, H.Brunner, Ch. Oehr, Nucl. Instr. And Meth. In Phys. Res B. 208, 281 (2003);
h) B. Balu, V. Breedveld, D. W. Hess,Langmuir, 24, 4785 (2008);
i) A. Kaminska, H. KaczmarekJ. Kowalonek, Eur. Polym. J., 38, 1915 (2002);
j) E. Bormashenko, R. Grynyov, Colloids Surf., B., 92, 367 (2012);
k) E. Bormashenko, G. Chaniel, R. Grynyov, Appl. Surf. Sci., 273, 549 (2013).
3. J. Garcia-Torres, D. Sylla, L. Molina, E. Crespo, J. Mota, L. Bautista, Appl. Surf. Sci., 305, 292 (2014).
4. Y. Ladner, F. D’Orlye, C. Perreard, B. Da Silva, C. Guyon, M. Tatoulian, S. Griveau, F. Bedioui, A. Varenne, Plasma Process. Polym., 11, 518 (2014).
5. a) N. Shainsky, D. Dobrynin, U. Ercan, S.G. Joshi, H. Ji, A. Brooks, G. Fridman, Y. Cho, A. Fridman, G. Friedman, Plasma Process. Polym. 9, 1 (2012);
b) D. Staack, A. Fridman, A. Gutsol, Y. Gogotsi, G. Friedman, Angew. Chem. 120, 8140 (2008);
c) D. Staack, A. Fridman, A. Gutsol, Y. Gogotsi, G. Friedman, Angew. Chem. Int. Ed. Engl. 47, 8020 (2008);
d) D. P. Park, K. Davis, S. Gilani, C.-A .Alonzo, D. Dobrynin, G. Friedman, A. Fridman, A. Rabinovich, G. Fridman, Current Appl. Phys., 13, 19 (2013).
6. a) C. Shillingford, N. MacCallum, T.-S. Wong, Ph. Kim, J. Aizenberg, Nanotechnology, 25, 014019 (2014);
b) T.-S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg, Nature, 477, 443 (2011);
c) A. Grinthal, J. Aizenberg, Chem. Mater. 26, 698 (2014);
d) M. Nosonovsky, Nature, 477, 412 (2001);
e) A. Eifert, D. Paulssen, S. N. Varanakkottu, T. Baier, St. Hardt,Adv. Materials Interfaces, 1, 1300138 (2014);
f) E. Bormashenko, R. Pogreb, Ye. Bormashenko, R. Grynyov, O. Gendelman, Appl. Phys. Lett., 104, 171601 (2014).
7. V. Multanen, G. Chaniel, R. Grynyov, R. Y. Loew, N. Siany, E. Bormashenko, Colloids Surf. A, 461, 225 (2014).
8. a) E. Bormashenko, R. Pogreb, O. Stanevsky, Y. Bormashenko, Y. Socol, O. Gendelman, Polym. Adv. Technol., 16, 299 (2005);
b) E. Bormashenko, Al. Malkin, Al. Musin, Ye. Bormashenko, G. Whyman, N. Litvak, Z. Barkay, V. Machavariani, Macromol. Chem. Phys., 209, 567 (2008).
9. a) D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R. E. Cohen, G. H. McKinley, K. K. Varanasi, Soft Matter, 9, 177 (2013);
b) S. Anand, A.T. Paxson, R. Dhiman, J. D. Smith, K. K. Varanasi, ACS Nano, 6, 10122 (2012).
10. a) P. G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena, Springer, Berlin (2003);
b) H. Y. Erbil, Surface Chemistry of Solid and Liquid Interfaces, Blackwell, Oxford (2006);
c) E. Bormashenko, Wetting of Real Surfaces, de Gruyter, Berlin (2013).
11. a) P. Than, L.Prezosi, D.D. Joseph, M. Arney, J. Colloid Interface Sci., 124, 552 (1988);
b) H. Chung, T. W. Kim, M. Kwon, I. C. Kwon, S. Y. Jeong, J. Controlled Release, 71, 339 (2001).
12. R. Tadmor, Pr. S. Yadav, J. Colloid Interface Sci., 317, 241(2008).
13. a) A. Eifert, J. Petit, T. Baier, El. Bonaccurso, St. Hardt, Appl. Surf. Sci., 330, 104 (2015);
b) E. Bormashenko, R.Pogreb, G. Chaniel, V. Multanen, A. Ya. Malkin, Adv. Eng. Mat., DOI: 10.1002/adem.201400445 (2014).
Published
2018-10-11
How to Cite
Bormashenko, E., Multanen, V., Chaniel, G., Grynyov, R., Shulzinger, E., Pogreb, R., Aharoni, H., & Nagar, Y. (2018). Quantification and physics of cold plasma treatment of organic liquid surfaces. Journal of V. N. Karazin Kharkiv National University. Series Physics, (28), 33-39. https://doi.org/10.26565/2222-5617-2018-28-2