Quantification and physics of cold plasma treatment of organic liquid surfaces
Abstract
Plasma treatment increases the surface energy of condensed phases: solids and liquids. Two independent methods of the quantification of the influence imposed by a cold radiofrequency air plasma treatment on the surface properties of silicone oils (polydimethylsiloxane) of various molecular masses and castor oil are introduced. Under the first method the water droplet coated by oils was exposed to the cold air radiofrequency plasma, resulting in an increase of oil/air surface energy. An expression relating the oil/air surface energy to the apparent contact angle of the water droplet coated with oil was derived. The apparent contact angle was established experimentally. Calculation of the oil/air surface energy and spreading parameter was carried out for the various plasma-treated silicone and castor oils. The second method is based on the measurement of the electret response of the plasma-treated liquids.
Downloads
References
b) M. Strobel, C. S. Lyons, K. L. Mittal (Eds), VSP, Zeist, The Netherlands (1994);
c) M. Thomas, K. L. Mittal (Eds),Wiley, Beverly, USA (2013);
d) M. Lehocky, H. Drnovska, B. Lapcikova, A. M. Barros-Timmons, T. Trindade, M.Zembala, L. Lapcik Jr., Colloids Surf., A., 222, 125 (2003);
d) E. C. Preedy, E. Brousseau, S. L. Evans, S. Perni, P.Prokopovich, Colloids Surf. A., 460, 83 (2014);
e) R. M. Cámara, E. Crespo, R. Portela, S. Suárezd, L. Bautista, F. Gutiérrez-Martín, B. Sánchez, Catalysis Today., 230, 145 (2014).
2. a) E. Occhiello, M. Morra, F. Garbassi, D. Johnson, P.Humphrey, Appl. Surf. Sci. 47, 235 (1991);
b) R. M. France, R. D. Short, Langmuir, 14, 4827 (1998);
c) R. M. France, R.D. Short, J. Chem. Soc., Faraday Trans., 93, 3173 (1997);
d) S. Wild, L. L. Kesmodel, J. Vac. Sci. Technol. A., 19, 856(2001);
e) E. Kondoh, T. Asano, A. Nakashima M. Komatu,J. Vac. Sci. Technol. B., 18, 1276 (2000);
f) J. P. Fernández-Blázquez, D. Fell, El. Bonaccurso, A. del Campo, J. Colloid Interface Sci., 357, 234 (2011);
g) D. Hegemann, H.Brunner, Ch. Oehr, Nucl. Instr. And Meth. In Phys. Res B. 208, 281 (2003);
h) B. Balu, V. Breedveld, D. W. Hess,Langmuir, 24, 4785 (2008);
i) A. Kaminska, H. KaczmarekJ. Kowalonek, Eur. Polym. J., 38, 1915 (2002);
j) E. Bormashenko, R. Grynyov, Colloids Surf., B., 92, 367 (2012);
k) E. Bormashenko, G. Chaniel, R. Grynyov, Appl. Surf. Sci., 273, 549 (2013).
3. J. Garcia-Torres, D. Sylla, L. Molina, E. Crespo, J. Mota, L. Bautista, Appl. Surf. Sci., 305, 292 (2014).
4. Y. Ladner, F. D’Orlye, C. Perreard, B. Da Silva, C. Guyon, M. Tatoulian, S. Griveau, F. Bedioui, A. Varenne, Plasma Process. Polym., 11, 518 (2014).
5. a) N. Shainsky, D. Dobrynin, U. Ercan, S.G. Joshi, H. Ji, A. Brooks, G. Fridman, Y. Cho, A. Fridman, G. Friedman, Plasma Process. Polym. 9, 1 (2012);
b) D. Staack, A. Fridman, A. Gutsol, Y. Gogotsi, G. Friedman, Angew. Chem. 120, 8140 (2008);
c) D. Staack, A. Fridman, A. Gutsol, Y. Gogotsi, G. Friedman, Angew. Chem. Int. Ed. Engl. 47, 8020 (2008);
d) D. P. Park, K. Davis, S. Gilani, C.-A .Alonzo, D. Dobrynin, G. Friedman, A. Fridman, A. Rabinovich, G. Fridman, Current Appl. Phys., 13, 19 (2013).
6. a) C. Shillingford, N. MacCallum, T.-S. Wong, Ph. Kim, J. Aizenberg, Nanotechnology, 25, 014019 (2014);
b) T.-S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal, J. Aizenberg, Nature, 477, 443 (2011);
c) A. Grinthal, J. Aizenberg, Chem. Mater. 26, 698 (2014);
d) M. Nosonovsky, Nature, 477, 412 (2001);
e) A. Eifert, D. Paulssen, S. N. Varanakkottu, T. Baier, St. Hardt,Adv. Materials Interfaces, 1, 1300138 (2014);
f) E. Bormashenko, R. Pogreb, Ye. Bormashenko, R. Grynyov, O. Gendelman, Appl. Phys. Lett., 104, 171601 (2014).
7. V. Multanen, G. Chaniel, R. Grynyov, R. Y. Loew, N. Siany, E. Bormashenko, Colloids Surf. A, 461, 225 (2014).
8. a) E. Bormashenko, R. Pogreb, O. Stanevsky, Y. Bormashenko, Y. Socol, O. Gendelman, Polym. Adv. Technol., 16, 299 (2005);
b) E. Bormashenko, Al. Malkin, Al. Musin, Ye. Bormashenko, G. Whyman, N. Litvak, Z. Barkay, V. Machavariani, Macromol. Chem. Phys., 209, 567 (2008).
9. a) D. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R. E. Cohen, G. H. McKinley, K. K. Varanasi, Soft Matter, 9, 177 (2013);
b) S. Anand, A.T. Paxson, R. Dhiman, J. D. Smith, K. K. Varanasi, ACS Nano, 6, 10122 (2012).
10. a) P. G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena, Springer, Berlin (2003);
b) H. Y. Erbil, Surface Chemistry of Solid and Liquid Interfaces, Blackwell, Oxford (2006);
c) E. Bormashenko, Wetting of Real Surfaces, de Gruyter, Berlin (2013).
11. a) P. Than, L.Prezosi, D.D. Joseph, M. Arney, J. Colloid Interface Sci., 124, 552 (1988);
b) H. Chung, T. W. Kim, M. Kwon, I. C. Kwon, S. Y. Jeong, J. Controlled Release, 71, 339 (2001).
12. R. Tadmor, Pr. S. Yadav, J. Colloid Interface Sci., 317, 241(2008).
13. a) A. Eifert, J. Petit, T. Baier, El. Bonaccurso, St. Hardt, Appl. Surf. Sci., 330, 104 (2015);
b) E. Bormashenko, R.Pogreb, G. Chaniel, V. Multanen, A. Ya. Malkin, Adv. Eng. Mat., DOI: 10.1002/adem.201400445 (2014).