Semi-classical analysis for proof extinction-property in finite time of solutions for parabolic equations with homogeneous main part and degenerate absorption potential

  • K. Stiepanova Simon Kuznets Kharkiv National University of Economics (KhNUE) ave. Science, 9-à, Kharkiv, 61166, Ukraine
Keywords: degenerate nonlinear parabolic equation, diffusion--absorption, extinction-property of solutions, semi-classical analysis

Downloads

Download data is not yet available.

References

1. Bandle C., Stakgold I. The formation of the dead core in parabolic reactiondi diffusion problems // Trans. Amer. Math. Soc., 1984. V. 286, 1. P. 275-293.

2. Chen Xu-Yan, Matano H., Mimura M. Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption // J. Reine Angew. Math., 1995. V. 459, 1. P. 1-36.

3. Friedman A., Herrero M.A. Extinction properties of semilinear heat equations with strong absorption // J. Math. Anal. Appl., 1987. V. 124, 2. - P. 530-546.

4. Knerr B.F. The behavior of the support of solutions of the equation of nonlinear heat conduction with absorption in one dimension // Trans. Amer. Math. Soc., 1979. - V. 249, 2. - P. 409-424.

5. Payne L.E., Improperly Posed Problems in Partial Differential Equations. -SIAM, Philadelphia, 1975. - 62 p.

6. Straughan B. Instability, Nonexistence and Weighted Energy Methods in Fluid Dynamics and Related Theories. - Pitman, London, 1982. - 169 p.

Diaz J., Veron L. Local vanishing properties of solutions of elliptic and parabolic quasilinear equations. // Trans. Amer. Math. Soc., 1985. - 290:2. -P. 787-814.

8. Antontsev S., Diaz J., Shmarev S.I. The Support Shrinking Properties for Solutions of Quasilinear Parabolic Equations with Strong Absorption Terms. // Annales de la Faculte des Sciences de Toulouse Math., 1995. - 6:4. - P. 5-30.

9. Cwickel M. Weak type estimates for singular value and the number of bound states of Schriodinger operator // Ann. Math., 1977. - 106. - P. 93-100.

10. Kondratiev V.A., Veron L. Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations. // Asymptotic Analysis., 1997. - 14.- P. 117-156.

11. Belaud Y. Heler B., Veron L. Long-time vanishing properties of solutions of sublinear parabolic equations and semi-classical limit of Schrödinger operator // Ann. Inst. Henri Poincarre Anal. nonlinear, 2001. - V. 1, 18. - P. 43-68.

12. Heler B. Semi-classical analysis for the Schriodinger operator and applications. - Lecture Notes in Math. 1336, Springer-Verlag, 1988. - 107 p.

13. Belaud Y., Shishkov A. Long-time extinction of solutions of some semilinear parabolic equations // J. Differ. Equat., 2007. - 238. - P. 64-86.

14. Belaud Y. Asymptotic estimates for a variational problem involving a quasilinear operator in the semi-classical limit // Annals of global analysis and geometry, 2004. - 26. - P. 271 - 313.

15. Alt H.W., Luckhaus S. Quasilinear elliptic-parabolic differential equations // Math. Z., 1983. -V. 183, 3. - P. 311-341.

16. Bernis F. Existence results for doubly nonlinear higher order parabolic equations on unbounded domain // Math. Am., 1988. - V. 279, 3. - P. 373-394.

17. Stiepanova K.V. Extinction of solutions for parabolic equations with double nonlinearity and a degenerate absorption potential // Ukrainian Mathematical Journal, 2014. - V. 66, 1. - P. 89-107.

18. Rosenblyum G. V. Distribution of the discrete spectrum of singular differential operators // Doklady Akad. Nauk USSR, 1972. - 202. - P. 1012-1015.

19. Lieb E.H., Thirring W. Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relations to Sobolev Inequalities // In Studies in Math. Phys., essay in honour of V. Bargmann, Princeton Univ. Press, 1976. - P. 203-237.
Published
2016-12-12
Cited
How to Cite
Stiepanova, K. (2016). Semi-classical analysis for proof extinction-property in finite time of solutions for parabolic equations with homogeneous main part and degenerate absorption potential. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 84, 31-45. https://doi.org/10.26565/2221-5646-2016-84-04
Section
Статті