The volumetric parametric resonance in magnetizable medium

  • Nikolai F. Patsegon V. N. Karazin Kharkiv National University
  • Sergei І. Potseluiev V. N. Karazin Kharkiv National University
Keywords: parametric resonance, oscillating magnetic field

Abstract

The stability of magnetizable medium stationary states at parametric excitation of a magnetic field is studied. Parameters of exited acoustic wave and the influence of oscillating magnetic field on the dispersion of sound and its propagation velocity are determined using asymptotic and numerical methods.

Downloads

Download data is not yet available.

References

Taketomi S., Tikadzumi S. Magnetic fluids. - M.: Mir, 1993. - 272 p. (in Rus.)

Polunin V. M. Acoustics of Nanodispersed Magnetic Fluids. - CRC Press, 2015. - 453 p.

Patsegon N. F., Popova L. N. Spatial structures in magnetizable fluids //Journ. of Math. Sci., 2012. - V. 180, 2. - P. 175–186.

Tarapov I. E. Simple waves in nonconducting magnetizable medium //Journ. of Appl. Math. Mech. (PMM), 1973. - V. 37, 5. - P. 813–821.

Patsegon N. F., Potseluiev S. I. Volumetric parametric resonance in magnetic fluids, the excitation of acoustic oscillations. //International Mathematical Conference "Differential Equations, Computational Mathematics, Theory of functions and mathematical methods of mechanics". – Kyiv, Taras Shevchenko National University. - April 23-24, 2014. - 99 p. (in Rus.)

Potseluiev S. I., Patsegon N. F. Parametric instability of the free surface of nonlinear magnetizable fluid. //Contemporary problems of mathematics, mechanics and computing sciences, – Kharkov: "Apostrophe 2011. - P. 104–120.

Patsegon N. F., Potseluiev S. I. The stability of a free surface of viscous magnetizable fluid at multiparametric excitation. //Applied hydromechanics, 2014. - 16(88). - No 3. - P. 36–51. (in Rus.)

De Groot S. R., Mazur P. Non-Equilibrium Thermodynamics. - Dover Pub., 2011. - 526 p.

Landau L. D., Lifshitz E. M. Electrodynamics of Continuous Media. – Pergamon Press, 2004.- 476 p.

Patsegon N. F. General properties of wave motion in nonconducting magnetized media. //Magnetohydrodynamics, 1990. - V. 26. - 3. - P. 279–
283.

Rosenzweig R. Ferrohydrodynamics. - Dover Pub., 2014. - 344 p.

Nerukh A., Sakhnenko N., Benson T., Sewell P. Non-stationary Electromagnetics. - Pan Stanford Pub., 2012. - 616 p.

Nayfeh A. Perturbation methods. – Wiley-VCH, 2000. - 437 p.

McLachlan N.W. Theory and application of Mathieu functions. – Oxford University Press, 1951. - 412 p.

Tarapov I. E. Continuum Mechanics. Part 2. - Kharkiv: Golden Pages, 2002. - 514 p. (in Rus.)

Frolov K. V. at al. Vibration in the technique. Directory in 6 volumes /Editor: Chelomei V. N. – M. : Mechanical Engineering, 1978.- 1. - Vibrations of linear systems /Editor: Bolotin V. V. - 352 p. (in Rus.)

Kumar K., Tuckerman. L. S. Parametric instability of the interface between two fluids. //Journ. Fluid Mech., 1994. - 279. - p. 49–68.
Published
2015-12-29
Cited
How to Cite
Patsegon, N. F., & PotseluievS. І. (2015). The volumetric parametric resonance in magnetizable medium. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 81, 20-35. https://doi.org/10.26565/2221-5646-2015-81-03
Section
Статті