Description operator C-symmetry in the case of the space C^2

  • Вероніка І. Суділовська Kyiv professional college
Keywords: Krein spaces, indefinite metrics, C-symmetry, Pauli matrices

Abstract

We describe all operators C in two-dimensional Hilbert space C^2 using Pauli matrices. The conditions for J_alpha-adjoint operator, which guarantee it the property of C-symmetry.

Downloads

Download data is not yet available.

References

Грод А. І. До теорії PT-симетричних операторів. // Чернівецький Науковий Вісник, 2011. -- Т. 1, № 4. -- 128 с.

T. Ya. Azizov and I.S. Iokhvidov. Linear Operators in Spaces with Indefinite Metric. Wiley, Chichester, 1989.

C. M. Bender. Making sense of non-Hermitian Hamiltonians. // Rep. Progr. Phys. 70, 2007. -- no. 6. -- P.947-1018.

C. M. Bender, D. C. Brody, and H. F. Jones. Complex Extension of Quantum Mechanics. // Phys. Rev. Lett., 89, 2002. -- No. 27. -- P. 401-405.

C. M. Bender and H. F. Jones. Semiclassical Calculation of the $C$ Operator in PT-Symmetric Quantum Mechanics. // Phys.Lett.A. 328, 2004. -- P.102--109.

C. M. Bender and S. P. Klevansky. Nonunique $C$ operator in $PT$ quantum mechanics. // Phys. Lett. A. 373, 2009. -- no. 31. -- P. 2670-2674.

C. M. Bender and Barnabas Tan. Calculation of the hidden symmetry operator for a $PT$-symmetric square well. // J. Phys. A. 39, 2006. - no. 8. - P. 1945-1953.

A. Grod, S. Kuzhel, and V. Sudilovskaya. On operators of transition in Krein spaces // Opuscula Mathematica. 31, 2011. - No. 1. -- P.49--59.

S. Kuzhel. On pseudo-Hermitian operators with generalized $C$-symmetries. // Modern Analysis and Applications. The Mark Krein Centenary Conference, Vol. 1: Operator theory and related topics, Oper. Teory Adv. Appl., 190, 2009. --
P. 375--385.

A. Mostafazadeh. Pseudo-Hermitian Representation of Quantum Mechanics. // Int. J. Geom. Meth. Mod. Phys. 7, 2010. -- P. 1191--1306.

A. Mostafazadeh. Pseudo-Hermiticity and Generalized PT- and CPT-Symmetries. // J.Math.Phys. 44, 2003. - P. 974--989.
Published
2015-12-29
Cited
How to Cite
Суділовська, В. І. (2015). Description operator C-symmetry in the case of the space C^2. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 82, 19–26. https://doi.org/10.26565/2221-5646-2015-82-02
Section
Статті