Attractor for a composite system of nonlinear wave and thermoelastic plate equations

Keywords: acoustic model, attractor, upper semi-continuity

Downloads

Download data is not yet available.

References

Babin A. V., Vishik M. I. Attractors of evolution equations. - North-Holland, 1992. - 293 p.

Bucci F., Chueshov I. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations// Discrete Contin. Dynam. Systems, 2008. - 22. - P. 557-586.

Bucci F, Chueshov I., Lasiecka I. Global attractor for a composite system of nonlinear wave and plate aquations// Commun. Pure Appl. Anal., 2007. - 6. - P. 113-140.

Chueshov I., Lasiecka I. Attractors for second-order evolution equations with a nonlinear damping// J. Dyn. Diff. Eqns, 2004. - 16, no. 2. - P. 469-512.

Chueshov I., Lasiecka I. Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits// Milan J. Math., 2006. - 74. - P. 117 - 138.

Chueshov I.D. Introduction to the theory of infinite-dimensional dissipative systems. - Acta, Kharkov, 1999. - 433 p.

Chueshov I., Lasiecka I. Long-time behavior of second order evolution equations with nonlinear damping, Memoirs of AMS 912. - AMS, Providence, RI, 2008. - 188 p.

Chueshov I., Lasiecka I. Long-time dynamics of von Karman semi-flows with nonlinear boundary interior damping// J. Differential Equations, 2007. - 233. - P. 42-86.

Chueshov I., Lasiecka I. Von Karman evolution equations.Well-posedness and long-time dynamics. - Springer, New-York, 2010. - 781 p.

Fastovska T. Asymptotic properties of global attractors for nonlinear Mindlin-Timoshenko model of thermoelastic plate// Visnyk of Kharkiv National University, series "Mathematics, applied mathematics and mechanics", 2006. - 56, no. 749. - P. 13-29.

Hale J. K. Asymptotic behavior of dissipative systems.- Amer. Math. Soc., Providence, Rhode Island, 1988. - 198 p.

Hale J. K., Raugel G., Upper semicontinuity of the attractor for a singulary perturbed hyperbolic equation// J. Diff. Equations, 1988. - 73. - P. 197-214.

Howe M.S. Acoustics of fluid-structure interactions. Cambridge Monographs on Mechanics. - Cambridge University Press, Cambridge, 1998. - 560 p.

Khanmamedov A.Kh., Global attractors for von Karman equations with nonlinear dissipation// J. Math. Anal. Appl., 2006. - 318, P. 92-101.

Lagnese J. Boundary stabilization of thing plates.-Philadelphia: SIAM, 1989. - 176 p.

Lasiecka I. Mathematical Control Theory of coupled PDE's, CBMS-NSF Regional Conference Series in Applied Mathematics 75- Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2002. - 242 p.

Lasiecka I., Lebiedzik C. Asymptotic behaviour of nonlinear structural acoustic interactions with thermal effects on the interface// Nonlinear Anal., Ser. A: Theory Methods, 2002. - 49 - P. 703-735.

Lasiecka I., Lebiedzik C. Decay rates of interactive hyperbolic-parabolic PDE models with thermal effects on the interface// Appl. Math. Optim., 2000. - 42. - P. 127-167.

Lasiecka I., Lebiedzik C., Uniform stability in structural acoustic systems with thermal effects and nonlinear boundary damping// Control Cybernet., 1999. - 28. - P. 557-581.

Lasiecka I., Triggiani B. Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Vol. 1: Abstract parabolic Systems; Vol. 2: Abstract Hyperbolic-like Systems over a Finite Time Horizon, Encyclopedia of Mathematics and its Applications, Voll. 74-75- Cambrige University Press, 2000. - 1067 p.

Lebiedzik C. Exponential stability in structural acoustic models with thermoelasticity// Dynam. Contin. Discrete Impuls. System, 2000. - 7. - P. 369-383.

Morse P.M., Ingard K.U. Theoretical Acoustics- McGraw-Hill, New York, 1968. - 927 p.

Ryzhkova I. Dynamics of a thermoelastic von Karman plate in a subsonic gas flow // Z. Angew. Math. Phys, 2007. - 58 - P. 246-261.

Schiavone P., Tait R. J. Thermal effects in Mindlin-type plates// Q. J. Mech. Appl. Math., 1993. - 46, pt. 1. - P. 27-39.

Simon J. Compact sets in the space Lp(0; T;B) // Ann. Mat. Pura Appl., 1987. - 148, Ser.4. - P. 65-96.

Temam R. Infinite-dimensional dynamical systems in Mechanics and Physics. Springer, New-York, 1988. - 500 p.
Published
2014-12-20
Cited
How to Cite
Fastovska, T. B. (2014). Attractor for a composite system of nonlinear wave and thermoelastic plate equations. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, (1133), 4-35. https://doi.org/10.26565/2221-5646-2014-1133-01
Section
Статті