Korobov’s controllability function method via orthogonal polynomials on [0,∞)

  • Abdon Choque Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio C-3, C.U., CP 58060, Morelia, Michoacan, Mexico https://orcid.org/0000-0003-0226-9612
  • Tatjana Vukasinac Facultad de Ingenieria Civil, Universidad Michoacana de San Nicolas de Hidalgo, Edificio A, C.U., CP 58060, Morelia, Michoacan, Mexico https://orcid.org/0000-0002-0810-1960
Keywords: Bounded control, orthogonal polynomials, finite-time stabilization, controllability function, canonical system

Abstract

Given a controllable system described by ordinary or partial differential equations and an initial state, the problem of finding a set of bounded positional controls that transfer the initial state to another state, not necessarily an equilibrium point, in finite time is called the synthesis problem. In the present work, we consider a family of Brunovsky systems of dimension n. A family of bounded positional controls un(x) is developed to stabilize a given Brunovsky system in finite time. We employ orthogonal polynomials associated with a function distribution σ(τ, θ) defined for τ ∈ [0, +∞) and parameter θ > 0. The parameter θ is interpreted as a Korobov’s controllability function, θ = θ(x), which serves as a Lyapunovtype function. Utilizing θ(x), we construct the positional control un(x) = un(x, θ(x)).
Our analysis is based on the foundational work “A general approach to the solution of the bounded control synthesis problem in a controllability problem”. Matematicheskii Sbornik, 151(4), 582–606 (1979) by Korobov, V. I, in which the controllability function method was proposed. This method has been applied to solve bounded finite-time stabilization problems in various control scenarios, such as the control of the wave equation, optimal control with mixed cost functions, and other applications.
For the construction of the mentioned positional controls, we employ a member of a family of orthogonal polynomials on [0,∞). For orthogonal polynomials, we refer to “Orthogonal Polynomials”. American Mathematical Society, Providence, (1975) by G. Szego.
We also rely on the work “On matrix Hurwitz type polynomials and their interrelations to Stieltjes positive definite sequences and orthogonal matrix polynomials”. Linear Algebra and its Applications, 476, 56–84 (2015) by Choque Rivero, A. E.
The results in the present work extend and develop the findings presented in the conference paper “Bounded finite-time stabilizing controls via orthogonal polynomials”. 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico. –2018 by Choque-Rivero A. E., Orozco B. d. J. G.

Downloads

References

E. D. Sontag. Mathematical control theory: Deterministic finite dimensional systems, Springer New York, NY. - 1998. - ISBN: 978-0-387-98489-6.

G. G. Rigatos. Nonlinear control and filtering using differential flatness approaches: Applications to electromechanical systems, Springer Cham. - 2015. - ISBN:~978-3-319-16419-9.

T. S. Chihara. An introduction to orthogonal polynomials, Gordon and Breach, Science Publishers, Inc. - 1978. - ISBN:~0677041500

G. Szego. Orthogonal Polynomials, American Mathematical Society, Providence. - 1975. - ISBN:~0821810235.

V. I. Korobov, V. O. Skoryk. Construction of restricted controls for a nonequilibrium point in global sense, Vietnam Journal of Mathematics. – 2015. – Vol. 43, No 2 – P. 459–469. DOI: https://doi.org/10.1007/s10013-015-0132-4

A. E. Choque Rivero. On the solution set of the admissible bounded control problem via orthogonal polynomials, IEEE Transactions on Automatic Control. – 2017 – Vol. 62, No 10 – P. 5213–5219. DOI: https://doi.org/10.1109/TAC.2016.2633820

A. E. Choque-Rivero, B. d. J. G. Orozco. Bounded finite-time stabilizing controls via orthogonal polynomials.2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico. – 2018 – P. 1–4. DOI: https://doi.org/10.1109/ROPEC.2018.8661456

A. E. Choque Rivero. On Dyukarev’s resolvent matrix for a truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials, Linear Algebra and its Applications. – 2015. – Vol. 474. – P. 44–109. DOI: https://doi.org/10.1016/j.laa.2015.01.027

A. E. Choque Rivero. On matrix Hurwitz type polynomials and their interrelations to Stieltjes positive definite sequences and orthogonal matrix polynomials, Linear Algebra and its Applications. – 2015. – Vol. 476. – P. 44–84. DOI: https://doi.org/10.1016/j.laa.2015.03.001

Yu. M. Dyukarev. Theory of Interpolation Problems in the Stieltjes Class and Related Problems of Analysis. - 2006. - Habilitation thesis, Kharkiv National University.

A. Sandryhaila, J. Kovacevic, M. Puschel. Algebraic signal processing theory: 1-D nearest neighbor models, IEEE Transactions on Signal Processing. – 2012. – Vol. 60, No. 5. – P. 2247–2259. DOI: https://doi.org/10.1109/TSP.2012.2186133

N. Stojanovic, N. Stamenkovic, D. Zivaljevic. Monotonic, critical monotonic, ˇand nearly monotonic low-pass filters designed by using the parity relation for Jacobi polynomials, International Journal of Circuit Theory and Applications. – 2017. – Vol. 45, No. 12. – P. 1978–1992. DOI: https://doi.org/10.1002/cta.2375

L. Lindstrom. Signal filtering using orthogonal polynomials and removal of edge effects, May 22 US Patent 7, 221, 975. – 2007.

G. Valent, W. Van Assche. The impact of Stieltjes’ work on continued fractions and orthogonal polynomials: additional material, Journal of Computational and Applied Mathematics. – 1995. – Vol. 65, No. 1-3. – P. 419-447. DOI: https://doi.org/10.1016/0377-0427(95)00128-X

V. I. Korobov. A general approach to the solution of the bounded control synthesis problem in a controllability problem, Matematicheskii Sbornik. – 1979. – Vol. 151, No. 4. – P. 582-606.

V. I. Korobov, Y. V. Korotyaeva. Feedback control design for systems with x-discontinuous rigt–hand side, J. Optim. Theory Appl. – 2011. – Vol. 149. – P. 494–512. DOI: https://doi.org/10.1007/s10957-011-9800-z

V. I. Korobov, T. V. Revina. On perturbation range in the feedback synthesis problem for a chain of integrators system, IMA J. Math. Control. Inf. – 2021.– Vol. 38. – P. 396–416. DOI: https://doi.org/10.1093/imamci/dnaa035

V. I. Korobov, K. Stiepanova. The peculiarity of solving the synthesis problem for linear systems to a non-equilibrium point, Mat. Fiz. Anal. Geom. – 2021. – Vol. 17, No 3 – P. 326–340. DOI: https://doi.org/10.15407/mag17.03.326

A. E. Choque-Rivero, G. A. Gonzalez, E. Cruz Mullisaca. Korobov's controllability function method applied to finite-time stabilization of the Rossler system via bounded controls, Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics. - 2020. - Vol. 91. - P. 4-20. DOI: http://dx.doi.org/10.26565/2221-5646-2020-91-01

A. E. Choque Rivero, J. J. Rico-Melgoza, F. Ornelas-Tellez. Finite-time stabilization of the prey-predator model, Memorias del Congreso Nacional de Control Autom'atico. - 2019. - P. 395-400. https://revistadigital.amca.mx/wp-content/uploads/2022/06/0152.pdf

V. I. Korobov. Controllability function method, (in Russian), NITS, Inst. Comp. Research, Moscow-Izhevsk: Izdanie RFFI – 2007.

A. E. Choque Rivero, V. I. Korobov, V. A. Skoryk. Controllability function as time of motion I. Journal of Mathematical Physics, Analysis, Geometry. – 2004. – Vol. 11, No. 2. – P. 208– 225. DOI: http://dx.doi.org/10.48550/arXiv.1509.05127

A. E. Choque Rivero, V. I. Korobov, V. A. Skoryk. Controllability function as time of motion II. Journal of Mathematical Physics, Analysis, Geometry.– 2004 – Vol. 11, No 3 – P. 341– 354.

A. E. Choque Rivero. The controllability function method for the synthesis problem of a nonlinear control system, International Review of Automatic Control. – 2008 – Vol. 1, No 4 – P. 441–445.

W. M. Haddad, V. S. Chellaboina. Nonlinear Dynamical Systems and Control, Princeton University Press. - 2008. - ISBN: 9780691133294.

A. E. Choque Rivero. Extended set of solutions of a bounded finite-time stabilization problem via the controllability function, IMA J. Math. Control Inf. – 2021. – Vol. 38, No. 4. – P. 1174–1188. DOI: http://dx.doi.org/10.1093/imamci/dnab028

A. E. Choque Rivero. Korobov’s Controllability Function as Motion Time: Extension of the Solution Set of the Synthesis Problem, Journal of Mathematical Physics, Analysis, Geometry. – 2023. – Vol. 19, No 3. – P. 556-586. DOI: http://dx.doi.org/10.15407/mag19.03.556

A. E. Choque Rivero. Hurwitz polynomials and orthogonal polynomials generated by Routh–Markov parameters, Mediterranean Journal of Mathematics. – 2018. – Vol. 15, No 40 – P. 1-15. DOI: http://dx.doi.org/10.1007/s00009-018-1083-2

S. P. Bhat, D. S. Bernstein. Lyapunov analysis of finite-time differential equations, IEEE, American Control Conference. – 1995. – 3. – P. 1831–1832. DOI: http://dx.doi.org/10.1109/ACC.1995.531201

A. S. Poznyak, A. Ye. Polyakov, V. V. Strygin. Analysis of finite-time convergence by the method of Lyapunov functions in systems with second-order sliding modes, Journal of Applied Mathematics and Mechanics. – 2011. – Vol. 75, No. 3. – P. 289–303. DOI: http://dx.doi.org/10.1016/j.jappmathmech.2011.07.006

V. I. Korobov, G. M. Sklyar. Methods for constructing of positional controls and an admissible maximum principle, Differ. Uravn. - 1990. - Vol. 26, No. 11. - P. 1914-1924.

V. I. Korobov, T. V. Revina. On the feedback synthesis for an autonomous linear system with perturbations. J. of Dynam. and Control Syst. - 2024. DOI: https://doi.org/10.1007/s10883-024-09690-4

A. E. Choque-Rivero. The matrix Toda equations for coefficients of a matrix three-term recurrence relation, Operators and Matrices. - 2019. - Vol. 13, No. 4. - P. 1125-1145. DOI: https://doi.org/10.7153/oam-2019-13-75

A. E. Choque-Rivero, I. Area. Favard type theorem for Hurwitz polynomials, Discrete and Continuous Dynamical Systems- B. - 2020. - Vol. 25, No. 2. - P. 529-544. DOI: https://doi.org/10.3934/dcdsb.2019252

Published
2024-12-23
Cited
How to Cite
Choque, A., & Vukasinac, T. (2024). Korobov’s controllability function method via orthogonal polynomials on [0,∞). Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 100, 61-78. https://doi.org/10.26565/2221-5646-2024-100-04
Section
Статті