On some hypergeometric Sobolev orthogonal polynomials with several continuous parameters

Keywords: orthogonal polynomials, Sobolev orthogonality, recurrence relations

Abstract

In this paper we study the following hypergeometric polynomials: $$ \mathcal{P}_n(x) = \mathcal{P}_n(x;\alpha,\beta,\delta_1,
\dots,\delta_\rho,\kappa_1,\dots,\kappa_\rho) = $$ $$ = {}_{\rho+2} F_{\rho+1} (-n,n+\alpha+\beta+1,\delta_1+1,
\dots,\delta_\rho+1;\alpha+1,\kappa_1+\delta_1+1,
\dots,\kappa_\rho+\delta_\rho+1;x), $$ and $$ \mathcal{L}_n(x) = \mathcal{L}_n(x;\alpha,\delta_1,\dots,
\delta_\rho,\kappa_1,\dots,\kappa_\rho) = $$ $$ = {}_{\rho+1} F_{\rho+1} (-n,\delta_1+1,\dots,\delta_\rho+1;
\alpha+1,\kappa_1+\delta_1+1,\dots,\kappa_\rho+\delta_\rho+1;x),
\qquad n\in\mathbb{Z}_+, $$ where $\alpha,\beta,\delta_1,\dots,\delta_\rho\in(-1,+\infty)$, and $\kappa_1,\dots,\kappa_\rho\in\mathbb{Z}_+$, are some parameters. The natural number $\rho$ of the continuous parameters $\delta_1,\dots,\delta_\rho$ can be chosen arbitrarily large. It is seen that the special case $\kappa_1=\dots=\kappa_\rho=0$ leads to Jacobi and Laguerre orthogonal polynomials. Of course, such polynomials and more general ones appeared in the literature earlier. Our aim here is to show that polynomials $\mathcal{P}_n(x)$ and $\mathcal{L}_n(x)$ are Sobolev orthogonal polynomials on the real line with some explicit matrices of measures. The importance of the orthogonality property was our main reason to concentrate our attention on polynomials $\mathcal{P}_n(x)$ and $\mathcal{L}_n(x)$. Here we shall use some our tools developed earlier. In particular, it was shown recently that Sobolev orthogonal polynomials are related by a differential equation with orthogonal systems $\mathcal{A}$ of functions acting in the direct sums of usual $L^2_\mu$ spaces of square-summable (classes of the equivalence of) functions with respect to a positive measure $\mu$. The case of a unique $L^2_\mu$ is of a special interest, since it allows to use OPRL to obtain explicit systems of Sobolev orthogonal polynomials. The main problem here is \textit{to choose a suitable linear differential operator in order to get explicit representations for Sobolev orthogonal polynomials}. The proof of the orthogonality relations is then a verification of such a choice and it goes in another direction: we start from the already known polynomials to their properties. We also study briefly such properties of the above polynomials: integral representations, differential equations and location of zeros. A system of such polynomials with a kind of the bispectrality property is constructed.    

Downloads

Download data is not yet available.

References

H. Bavinck. Differential operators having Sobolev-type Gegenbauer polynomials as eigenfunctions. Higher transcendental functions and their applications, J. Comput. Appl. Math. - 2000. - Vol. 118, No. 1-2. - P. 23-42. DOI: https://doi.org/10.1016/S0377-0427(00)00279-X

H. Bavinck. Differential operators having Sobolev-type Laguerre polynomials as eigenfunctions: new developments, Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), J. Comput. Appl. Math. -2001. - Vol. 133, No. 1-2. - P. 183-193. DOI: https://doi.org/10.1016/S0377-0427(00)00642-7

H. Bavinck, Differential operators having Sobolev-type Jacobi polynomials as eigenfunctions. J. Comput. Appl. Math. - 2003. - Vol. 151, No. 2 - P. 271-295. DOI: https://doi.org/10.1016/S0377-0427(02)00810-5

H. Bavinck, H.G. Meijer. Orthogonal polynomials with respect to a symmetric inner product involving derivatives, Appl. Anal. - 1989. - Vol. 33, No. 1-2. - P. 103-117. DOI: https://doi.org/10.1080/00036818908839864

T.W. Chaundy. An extension of hypergeometric functions (I), The Quarterly Journal of Mathematics. - 1943. - Vol. os-14, No. 1. - P.55-78. DOI: https://doi.org/10.1093/qmath/os-14.1.55

J.J. Duistermaat, F.A. Gr"unbaum. Differential equations in the spectral parameter, Comm. Math. Phys. - 1986. - Vol. 103, No. 2. - P. 177-240.

A.J. Dur'an, M.D. de la Iglesia. Differential equations for discrete Laguerre-Sobolev orthogonal polynomials, J. Approx. Theory. - 2015. - Vol. 195. - P. 70-88. DOI: https://doi.org/10.1016/j.jat.2014.01.004

A.J. Dur'an, M.D. de la Iglesia. Differential equations for discrete Jacobi-Sobolev orthogonal polynomials, J. Spectr. Theory. - 2018. - Vol. 8, No. 1. - P. 191-234. DOI: https://doi.org/10.4171/jst/194

A. Erd'elyi, W. Magnus, F. Oberhettinger, F.G. Tricomi. Higher transcendental functions. Vols. I, II. Based, in part, on notes left by Harry Bateman. McGraw-Hill Book Company, Inc., New York-Toronto-London. - 1953.

A. Erd'elyi, W. Magnus, F. Oberhettinger, F.G. Tricomi. Higher transcendental functions. Vol. III. Based, in part, on notes left by Harry Bateman. McGraw-Hill Book Co., Inc., New York-Toronto-London. -- 1955.

W.N. Everitt, K.H. Kwon, L.L. Littlejohn, R. Wellman. Orthogonal polynomial solutions of linear ordinary differential equations, Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), J. Comput. Appl. Math. - 2001. - Vol. 133, No. 1-2. - P. 85-109. DOI: https://doi.org/10.1016/S0377-0427(00)00636-1

G.M. Fichtenholz. Infinite series: ramifications, Revised English edition. Translated from the Russian and freely adapted by Richard A. Silverman. The Pocket Mathematical Library, Course 4. Gordon and Breach Science Publishers, New York-London-Paris, 1970.

E. Horozov. Vector orthogonal polynomials with Bochner's property, Constr. Approx. - 2018. - Vol. 48, No. 2. - P. 201-234. DOI: https://doi.org/10.1007/s00365-017-9410-6

M.E.H. Ismail. Classical and quantum orthogonal polynomials in one variable, With two chapters by Walter Van Assche. With a foreword by Richard A. Askey. Encyclopedia of Mathematics and its Applications, 98. Cambridge University Press, Cambridge. -- 2005. DOI: https://doi.org/10.1017/CBO9781107325982

J. Koekoek, R. Koekoek, H. Bavinck. On differential equations for Sobolev-type Laguerre polynomials, Trans. Amer. Math. Soc. - 1998. - Vol. 350, No. 1. - P. 347--393. DOI: https://doi.org/10.1090/S0002-9947-98-01993-X

R. Koekoek, H.G. Meijer. A generalization of Laguerre polynomials, SIAM J. Math. Anal. - 1993. - Vol. 24, No. 3. - P. 768-782. DOI: https://doi.org/10.1137/0524047

R. Koekoek. Generalizations of Laguerre polynomials, J. Math. Anal. Appl. - 1990. - Vol. 153, No. 2. - P. 576--590. DOI: https://doi.org/10.1016/0022-247X(90)90233-6

R. Koekoek, P.A. Lesky, R.F. Swarttouw. Hypergeometric orthogonal polynomials and their $q$-analogues. With a foreword by Tom H. Koornwinder. Springer Monographs in Mathematics, Springer-Verlag, Berlin. -- 2010. DOI: https://doi.org/10.1007/978-3-642-05014-5

A.M. Krall. Hilbert space, boundary value problems and orthogonal polynomials. Operator Theory: Advances and Applications, 133, Birkh"auser Verlag, Basel. - 2002. DOI: https://doi.org/10.1007/978-3-0348-8155-5

H.L. Krall. Certain differential equations for Tchebycheff polynomials, Duke Math. - 1938. - Vol. J.4 , No. 4. - 705-718. DOI: https://doi.org/10.1215/S0012-7094-38-00462-4

F. Marcell'an, Yuan Xu. On Sobolev orthogonal polynomials, Expo. Math. - 2015. - Vol. 33, No. 3. - 308-352. DOI: https://doi.org/10.1016/j.exmath.2014.10.002

M. Marden. Geometry of polynomials. Second edition. Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I. -1966.

C. Markett, New representations of the Laguerre-Sobolev and Jacobi-Sobolev orthogonal polynomials, From operator theory to orthogonal polynomials, combinatorics, and number theory, a volume in honor of Lance Littlejohn's 70th birthday, Oper. Theory Adv. Appl., 285, Birkh"auser Springer, Cham, 2021. - P. 305-327.

C. Markett, The differential equation for Jacobi-Sobolev orthogonal polynomials with two linear perturbutions. Corrected title: The differential equation for Jacobi-Sobolev orthogonal polynomials with two linear perturbations, J. Approx. Theory. - 2022. - Vol. - 280. - Paper No. 105782, 24 pp. DOI: https://doi.org/10.1016/j.jat.2022.105782

E.B. McBride. Obtaining generating functions. Springer Tracts in Natural Philosophy, Vol. 21, Springer-Verlag, New York-Heidelberg. - 1971.

E.D. Rainville. Special functions. Reprint of 1960 first edition. Chelsea Publishing Co., Bronx, N.Y. -1971.

F.W. Sch"afke, G. Wolf. Einfache verallgemeinerte klassische Orthogonalpolynome. (German), J. Reine Angew. Math. - 1973. - Vol. 262-263. - P. 339-355.

V. Spiridonov, A. Zhedanov. Classical biorthogonal rational functions on elliptic grids, C. R. Math. Acad. Sci. Soc. R. Can. - 2000. - Vol. 22, No. 2. - P. 70-76.

G. Szeg"o. Orthogonal polynomials. Fourth edition. American Mathematical Society, Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I. - 1975.

S.M. Zagorodnyuk. On some classical type Sobolev orthogonal polynomials, J. Approx. Theory. - 2020. - Vol. 250. -- 105337, 14 pp. DOI: https://doi.org/10.1016/j.jat.2019.105337

S.M. Zagorodnyuk. On some Sobolev spaces with matrix weights and classical type Sobolev orthogonal polynomials, J. Difference Equ. Appl. - 2021. - Vol. 27, No. 2. - P.261-283. DOI: https://doi.org/10.1080/10236198.2021.1887160

S.M. Zagorodnyuk. On the multiplication operator by an independent variable in matrix Sobolev spaces, Adv. Oper. Theory. - 2022. - Vol. 7, No. 4. -- Paper No. 54. DOI: https://doi.org/10.1007/s43036-022-00221-1

Published
2023-10-10
Cited
How to Cite
Zagorodnyuk, S. (2023). On some hypergeometric Sobolev orthogonal polynomials with several continuous parameters. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 98, 4-24. https://doi.org/10.26565/2221-5646-2023-98-01
Section
Статті