A small gain theorem for finite-time input-to-state stability of infinite networks and its applications

Keywords: nonlinear systems, input-to-state stability, small gain conditions


We prove a small-gain sufficient condition for (global) finite-time input-to-state stability (FTISS) of infinite networks. The network under consideration is composed of a countable set of finite-dimensional subsystems of ordinary differential equations, each of which is interconnected with a finite number of its “neighbors” only and is affected by some external disturbances. We assume that each node (subsystem) of our network is finite-time input-to-state stable (FTISS) with respect to its finite-dimensional inputs produced by this finite set of the neighbors and with respect to the corresponding external disturbance. As an application we obtain a new theorem on decentralized finite-time input-to-state stabilization with respect to external disturbances for infinite networks composed of a countable set of strict-feedback form systems of ordinary differential equations. For this we combine our small-gain theorem proposed in the current work with the controllers design developed by S. Pavlichkov and C. K. Pang (NOLCOS-2016) for the gain assignment of the strict-feedback form systems in the case of finite networks. The current results address the finite-time input-to-state stability and decentralized finite-time input-to-state stabilization and redesign the technique proposed in recent work S. Dashkovskiy and S. Pavlichkov, Stability conditions for infinite networks of nonlinear systems and their application for stabilization, Automatica. – 2020. – 112. – 108643, in which the case of $\ell_{\infty}$-ISS of infinite networks was investigated. The current paper extends and generalizes its conference predecessor to the case of finite-time ISS stability and decentralized stabilization in presence of external disturbance inputs and with respect to these disturbance inputs. In the special case when all these external disturbances are zeroes (i.e. are abscent), we just obtain finite-time stability and finite-time decentralized stabilization of infinite networks accordingly.


Download data is not yet available.


M. O. Bebiya. Global synthesis of bounded controls for systems with power nonlinearity, Visnyk of V. N. Karazin Kharkiv National University, Ser. “Mathematics, Applied Mathematics and Mechanics”.–2015. – 81. – P. 36–51. DOI: 10.26565/2221-5646-2015-81-04

G. A. Bessonov, V. I. Korobov, and G. M. Sklyar. The problem of the stable synthesis of bounded controls for a certain class of non-steady systems, Journal of Applied Mathematics and Mechanics. – 1988. – 52(1). – P. 11–17. DOI: 10.1016/0021-8928(88)90052-4

S. P. Bhat and D. S. Bernstein. Finite time stability of continuous autonomous systems, SIAM J. Control Optim.–2000. – 38(3). – P. 751–766. DOI: 10.1137/S0363012997321358

A. E. Choque Rivero. The controllability function method for the synthesis problem of a nonlinear control system, International Review of Automatic Control. – 2008. – 4(1). – P. 441–445.

R. Curtain, O. V. Iftime, and H. Zwart. System theoretic properties of a class of spacially invariant systems, Automatica. – 2009. – 45. – P. 1619–1627. DOI: 10.1016/j.automatica.2009.03.005

R. D’Andrea and G. E. Dullerud. Distributed control design for spacially interconnected systems, IEEE Trans. Automatic Control. – 2003. – 48. – P. 1478–1495. DOI: 10.1109/TAC.2003.816954

S. Dashkovskiy and S. Pavlichkov. Stability conditions for infinite networks of nonlinear systems and their application for stabilization, Automatica. – 2020. – 112. – 108643. DOI: 10.1016/j.automatica.2019.108643

S. Dashkovskiy, B. Ruffer and F. Wirth. An ISS small gain theorem for general networks, Math. Control Signals Systems. – 2007. – 19(2). – P. 93–122. DOI: 10.1007/s00498-007-0014-8

S. Dashkovskiy, B. Ruffer and F. Wirth. Small gain theorems for large scale systems and construction of ISS Lyapunov functions, SIAM J. Control Optim. – 2010. – 48(6). – P. 4089–4018. DOI: 10.1137/090746483

S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok. Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods, Nonlinear Analysis: Hybrid Systems. – 2012. – 6(3). – P. 899–915. DOI: 10.1016/j.nahs.2012.02.001

P. De Leenheer, D. Angeli, and E. D. Sontag. Monotone chemical reaction networks, Journal of Mathematical Chemistry. – 2007. – 41(3). – P. 295–314. DOI: 10.1007/s10910-006-9075-z

J. M. Hendrickx and S. Martin. Open multi-agent systems: Gossiping with random arrivals and departures, In: Proc. 2017 IEEE Conference on Decision and Control (CDC) (Melbourne, VIC, Australia, December 12–15, 2017). – 2017. – P. 763–768. DOI: 10.1109/CDC.2017.8263752

Y. Hong and Z.-P. Jiang. Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties, IEEE Trans. Automatic Control. – 2006. – 51. – P. 1950–1956. DOI: 10.1109/TAC.2006.886515

Y. Hong, Z.-P. Jiang, and G. Feng. Finite-time input-to-state stability and applications to finite-time control design, SIAM J. Control Optim. – 2010. – 48(7). – P. 4395–4418. DOI: 10.1137/070712043

Y. Hong, H. O. Wang, and L. G. Bushnell. Adaptive finite-time control of nonlinear systems, In: Proc. 2001 American Control Conf. (Arlington, VA, USA, 25 Jun – 27 Jun 2001). – 2001. – P. 4149–4154. DOI: 10.1109/ACC.2001.945626

H. Ito. State-dependent scaling problems and stability of interconnected iISS and ISS systems, IEEE Trans. Automat. Control. – 2006. – 51(10). – P. 1626– 1643. DOI: 10.1109/TAC.2006.882930

Z.-P. Jiang, A. R. Teel, and L. Praly. Small-gain theorem for ISS systems and applications, Math. Control Signals Systems. – 1994. – 7(2). – P. 95–120. DOI: 10.1007/BF01211469

Z.-P. Jiang and Y. Wang. A generalization of the nonlinear small-gain theorem for large-scale complex systems, In: Proc. of the 7th World Congress of Intelligent Control and Automation, Chongqing, China. – 2008. – P. 1188–1193. DOI: 10.1109/WCICA.2008.4593093

C. Kawan, A. Mironchenko, A. Swikir, N. Noroozi, and M. Zamani. A Lyapunov-based small-gain theorem for infinite networks, IEEE Trans. Autom. Control. DOI: 10.1109/TAC.2020.3042410

V. I. Korobov. Controllability, stability of certain nonlinear systems, Differ. Uravn. – 1973. – 9(4). – P. 614–619.

V. I. Korobov. A general approach to the solution of the bounded control synthesis problem in a controllability problem, Mat. Sb. (USSR). – 1979. – 109(151). – P. 582–606.

V. I. Korobov. A solution of the problem of synthesis using a controllability function, Doklady Academii Nauk USSR. – 1979. – 248. – P. 1051–1063.

V. I. Korobov and G.M. Sklyar. Methods for constructing positional controls, and a feasible maximum principle, Differ. Uravn. – 1990. – 26(11). – P. 1914– 1924.

T. Liu and Z.-P. Jiang. Distributed output-feedback control of nonlinear multi-agent systems, IEEE Trans. Automatic Control. – 2013. – 58(11). – P. 2912-–2917. DOI: 10.1109/TAC.2013.2257616

S. Mehraeen, S. Jagannathan, and M. L. Crow. Decentralized dynamic surface control of large-scale interconnected systems in strict-feedback form using neural networks with asymptotic stabilization, IEEE Trans. Neural Networks. – 2011. – 22. – P. 1709–1722. DOI: 10.1109/TNN.2011.2140381

S. Mehraeen, S. Jagannathan, and M. L. Crow. Power system stabilization using adaptive neural network-based dynamic surface control, IEEE Trans. Power Systems. – 2011. – 26(2). – P. 669–680. DOI: 10.1109/TPWRS.2010.2059717

A. Mironchenko and H. Ito. Construction of Lyapunov functions for interconnected parabolic systems: an iISS approach, SIAM J. Control Optimiz. – 2015. – 53(6). – P. 3364–3382. DOI: 10.1137/14097269X

A. Mironchenko and F. Wirth. Characterizations of input-to-state stability for infinite-dimensional systems, IEEE Trans. Autom. Control. – 2018. – 63(6). – P. 1692–1707. DOI: 10.1109/TAC.2017.2756341

S. Pavlichkov and C. K. Pang. Decentralized finite-time stabilization of multiagent systems with invertible and non-invertible input-output links, In: Proc. 10th IFAC Symposium on Nonlinear Control Systems (Monterey, CA, USA, August 23–25, 2016). – 2016. – P. 760–765. DOI: 10.1016/j.ifacol.2016.10.257

S. Pavlichkov. A finite-time small-gain theorem for infinite networks and its applications, In: Proc. 2018 IEEE Conference on Decision and Control (CDC) (Miami Beach, FL, USA, December 17–19, 2018). – 2018. – P. 700–705. DOI: 10.1109/CDC.2018.8619208

S. Pavlichkov and C. K. Pang. A note on applications of a trajectory-based small-gain theorem to decentralized stabilization of switching networks with generalized dead zones, Journal of the Franklin Institute. – 2020. – 357(12). – P. 7796–7817. DOI: 10.1016/j.jfranklin.2020.05.045

I. Polushin, S. Dashkovskiy, A. Takhmar, and R. Patel. A small gain framework for networked cooperative force-reflecting teleoperation, Automatica. – 2013. – 49. – P. 338–348. DOI: 10.1016/j.automatica.2012.11.001

I. Polushin, H. J. Marquez, A. Tayebi, and P.X. Liu. A multichannel IOS small gain theorem for systems with multiple time-varying communication delays, IEEE Trans. Automatic Control. – 2009. – 54(2). – P. 404—409. DOI: 10.1109/TAC.2008.2009582

A. Polyakov, D. Efimov, and W. Perruquetti. Finite-time and fixed time stabilization: Implicit Lyapunov function approach, Automatica. – 2015. – 51. – P. 332–340. DOI: 10.1016/j.automatica.2014.10.082

B. Recht and R. D’Andrea. Distributed control of systems over discrete groups, IEEE Trans. Automatic Control. – 2004. – 49. – P. 1446–1452. DOI: 10.1109/TAC.2004.834122

E. D. Sontag. Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control. – 1989. – 34(4). – P. 435–443. DOI: 10.1109/9.28018

E. D. Sontag and Y. Wang. On characterizations of the input-to-state stability property, Systems and Control Letters. – 1995. – 24(5). – P. 351–359. DOI: 10.1016/0167-6911(94)00050-6

E. D. Sontag and Y. Wang. New characterizations of input-to-state stability, IEEE Trans. Automatic Control. – 1996. – 41(9). – P. 1283–1294. DOI: 10.1109/9.536498

J. Tsinias and I. Karafyllis. ISS property for time-varying systems and application to partial-state feedback stabilization and asymptotic tracking, IEEE Trans. Automatic Control. – 1999. – 44(11). – P. 2179–2184. DOI: 10.1109/9.802941

X. Xuang, W. Lin, and B. Yang. Global finite-time stabilization for a class of uncertain nonlinear systems, Automatica. – 2005. – 41. – P. 881–888. DOI: 10.1016/j.automatica.2004.11.036

H. Zwart, A. Firooznia, J. Ploeg, and N. van de Wouw. Optimal control for non-exponentially stabilizable spacially invariant systems with an application to vehicular platooning, In: Proc. 52nd IEEE Contr. Dec. Conf. (Firenze, Italy, 10 Dec – 13 Dec 2013). – 2013. – P. 3038–3042. DOI: 10.1109/CDC.2013.6760345

How to Cite
Pavlichkov, S. (2021). A small gain theorem for finite-time input-to-state stability of infinite networks and its applications. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 94, 40-59. https://doi.org/10.26565/2221-5646-2021-94-03