Korobov's controllability function method applied to finite-time stabilization of the Rössler system via bounded controls

Keywords: Rössler system, Korobov's controllability function, bounded control, finite time stabilization

Abstract

Rössler system has become one of the reference chaotic systems. Its novelty when introduced, being that exhibits a chaotic attractor generated by a simpler set of nonlinear differential equations than Lorenz system. It develops chaotic behaviour for certain values of its parameter triplet. The issue of controlling Rössler system by stabilizing one of its unstable equilibrium points has been previously dealt with in the literature. In this work, control of the Rössler system is stated by considering the synthesis problem. Given a system and one of its equilibrium points, the synthesis problem consists in constructing a bounded positional control such that for any x⁰ belonging to a certain neighborhood of the equilibrium point, the trajectory x(t) initiated in x⁰ arrives at this equilibrium point in finite time. Namely, by using V. I. Korobov’s method, also called the controllability function method, a family of bounded positional controls that solve the synthesis problem for the Rössler system is proposed. We mainly use two ingredients. The first one concerns the general theory of the controllability function The second ingredient is a family of bounded positional controls that was obtained in. Different from previous works on finite-time stabilization we propose an explicit family of bounded controls constructed by taking into account the only nonlinearity of the Rössler system, which is a quadratic function. By using the controllability function method, which is a Lyapunov-type function, the finite time to reach the desired equilibrium point is estimated. This is obtained for an arbitrary given control bound and an adequate set of initial conditions to achieve the control objective is computed.
This proposal may also be developed for any controlled system for which its linear part is completely controllable and its corresponding nonlinear part is a lipschitzian function in a neighborhood of the equilibrium point. In turn, this technique may be implemented as a tool for control chaos.

Downloads

Download data is not yet available.

References

K. T. Alligood, T. Sauer, J. A. Yorke. Chaos: An Introduction to Dynamical systems, Springer, - 1996. http://doi.org/10.1007/b97589

J.-F. Chang, M.-L. Hung, Y.-S. Yang, T.-L. Liao, J.-J.Yan. Controlling chaos of the family of Rössler systems using sliding mode control, Chaos, Solitons and Fractals, - 2008. - V. 37. Issue 2. - P. 609-622. http://doi.org/10.1016/j.chaos.2006.09.051

A. E. Choque-Rivero. The controllability function method for the synthesis problem of a nonlinear control system, International Review of Automatic Control, - 2008. - V. 1. no.4. - P. 441-445.

A. E. Choque-Rivero. Solution of a Synthesis Problem of a Nonlinear Control System, Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics. - 2009. - 59(850). - P. 45-51. http://vestnik-math.univer.kharkov.ua/Vestnik-Khnu-850-2009-choq.pdf

A. E. Choque-Rivero, B. J. Gómez Orozco. Bounded finite-time stabilizing controls via orthogonal polynomials, 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, - 2018. - P. 1-4. http://doi.org/10.1109/ROPEC.2018.8661456

A. E. Choque-Rivero, P. L. Cástulo Cruz. On Korobov's admissible maximum principle, 2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, - 2016. - P. 1-6. http://doi.org/10.1109/ROPEC.2016.7830634

A. E. Choque Rivero, V. I. Korobov, V. O. Skoryk. Controllability function as time of motion. I, Mat. Fiz. Anal. Geom., - 2004. - V. 11. no. 2. - P. 208-225 (in Russian); English translation in https://arxiv.org/abs/1509.05127

A. E. Choque Rivero, V. I. Korobov, V. O. Skoryk. Controllability function as time of motion. II, Mat. Fiz. Anal. Geom., - 2004. - V. 11. no. 3. - P. 341-354. (in Russian).

A. E. Choque-Rivero, F. Ornelas-Tellez. Bounded finite--time stabilization of the prey-predator model via Korobov’s controllability function, accepted to appear in Izv. Sarat. Univ. (N.S.) Ser. Mat. Mekh. Inform. - 2020.

V. Dobrushkin. Mathematica Tutorial for the Second Course in Differential Equations. Part III: Rossler attractor. 2015. http://www.cfm.brown.edu/people/dobrush/am34/Mathematica/ch3/rossler.html

B. C. Kuo. Sistemas de control automático (7ma. Edición). 1996. Prentice Hall Hispanoamericana, S. A., Mexiko, 930 p. (in Spanish) https://dademuchconnection.files.wordpress.com/2017/07/sistemas-de-control-automatico-benjamin-c-kuo.pdf

X. Liao, P. Yu. Chaos control for the family of Rössler systems using feedback controllers, Chaos Solitons & Fractals, - 2006. - 29(1). - P. 91-107. http://doi.org/10.1016/j.chaos.2004.12.046

D. G. Luenberger. Observers for multivariable systems, IEEE Trans. Automat. Contr., V. AC-11. no. 2. - 1966. - P. 190-197. http://doi.org/10.1109/TAC.1966.1098323

V. I. Korobov. A general approach to the solution of the problem of synthesizing bounded controls in a control problem, Mat. Sb. - 1979. - V. 109(151). no. 4(8). - P. 582-606 (in Russian); Engls translation: Math. USSR Sb. 37 (1980), No. 4, 535–557. http://doi.org/10.1070/SM1980v037n04ABEH002094

V. I. Korobov. Controllability function method. 2007. NITS, Inst. Comp. Research, M-Ighevsk

V. I. Korobov, G. M. Sklyar. Methods for constructing of positional controls and an admissible maximum principle, Differ. Uravn., - 1990. - 26(11). - P. 1914-1924.

V. I. Korobov, V. O. Skoryk. Construction of restricted controls for a non-equilibrium point in global sense, Vietnam Journal of Mathematics. - 2015. - 43(2). - P. 459-469. https://doi.org/10.1007/s10013-015-0132-4

H. F. Marj, R. Asgharian, N. Pariz. Controlling chaotic Rossler system via synchronization, using bifurcation parameter to choose desirable periodic orbit, Journal of Applied Sciences. - 2009. - 9(8). - P. 1450-1457. https://doi.org/10.3923/jas.2009.1450.1457

A. Ovseevich. A local feedback control bringing a linear system to equilibrium, J. Optim. Theory Appl. - 2015. - V. 165. no. 2. - P. 532-544. https://doi.org/10.1007/s10957-014-0636-1

A. Polyakov, D. Efimov and W. Perruquetti. Finite-time stabilization using implicit Lyapunov function technique, Proceedings of the 9th IFAC Symposium "Nonlinear Control Systems"(NOLCOS), Toulouse, France - 2013. - 46(23) P. 140-145. . https://doi.org/10.3182/20130904-3-FR-2041.00043

A. S. Poznyak, A. Y. Polyakov, V. V. Strygin. Analysis of finite-time convergence by the method of Lyapunov functions in systems with second-order sliding modes, J. Appl. Math. Mech, - 2011. - V. 75. Issue 3. - P. 289-303. https://doi.org/10.1016/j.jappmathmech.2011.07.006

M. Radford. A study of the Rössler system. 2007. School of Physics Jawja Institute of Technology, 12 p. http://www.chaosbook.org/projects/Radford/radford.pdf

M. Rafikov, J. M. Balthazar. On an optimal control design for Rössler system, Physics Letters A, - 2004. - Issue 3-4. V. 333. - P. 241-245. https://www.doi.org/10.1016/j.physleta.2004.10.032

M. Rafikov, J. M. Balthazar. On control and synchronization in chaotic and hyperchaotic systems via linear feedback control, Communications in Nonlinear Science and Numerical Simulation, - 2008. - Issue 7. V. 13. - P. 1246-1255. https://doi.org/10.1016/j.cnsns.2006.12.011

O. E. Rössler. An equation for continuous chaos, Physics Letters A, - 1976. - Issue 5. V. 57. - P. 397-398. https://doi.org/10.1016/0375-9601(76)90101-8

H. Wang, Z. Han, Q. Xie, W. Zhang. Finite-time chaos synchronization of unified chaotic system with uncertain parameters, Commun Nonlinear Sci Numer Simulat, - 2009. - Issue 5. V. 14. - P. 2239-2247. https://doi.org/10.1016/j.cnsns.2008.04.015

T. H. Yeap, N. U. Ahmed. Feedback control of chaotic systems, Dynamics and Control. - 1994. - V. 4. Issue 1. - P. 97-114. https://doi.org/10.1007/BF02115741

Published
2020-06-29
Cited
How to Cite
Choque-Rivero, A. E., González, G. A., & Cruz Mullisaca, E. (2020). Korobov’s controllability function method applied to finite-time stabilization of the Rössler system via bounded controls. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 91, 4-20. https://doi.org/10.26565/2221-5646-2020-91-01
Section
Статті