Fourier coefficients of borelian measures on the circle

  • Anatolij F. Grishin V.N.Karazin Kharkiv National University
  • Irina V. Poedintseva V.N.Karazin Kharkiv National University
Keywords: algebra $M(\bf T)$, Fourier coefficients, reducing formula, Geza theorem

Abstract

Let $\mu$ be a complex borelian measure on the unit circle $\bf T$ and let $\hat{\mu}(n)$ be its Fourier coefficients. The sum of the series $\sum\limits_{n=-\infty}^\infty \frac{\hat{\mu}(n)}{n+z}$ is calculated. There are different criteria a sequence $c_n$, $n\in(-\infty,\infty)$, to be a sequence of Fourier coefficients of some complex borelian measure on $\bf T$. One more criterion of such type is proved.

Downloads

Download data is not yet available.

References

Эдвардс Р. Ряды Фурье в современном изложении. Том 2. - Москва: Мир, - 1985. - 400 c.

Зигмунд А. Тригонометрические ряды. Том 1. - Москва: Мир, - 1965. - 616 c.

Katznelson Y. An introduction to harmonic analysis. - New York, London, Sydney, Toronto: John Wiley & Sons, - 1968. - 264 p.

Goes G. Addendum: Fourier-Stieltjes Series with Finitely Many Distinct Coe cients and Almost Periodic Sequenses. // Journal of Mathematical Analysis and Applications, - 1968. - 21. - P. 618.

Published
2013-05-15
Cited
How to Cite
Grishin, A. F., & Poedintseva, I. V. (2013). Fourier coefficients of borelian measures on the circle. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, (1061), 45-52. https://doi.org/10.26565/2221-5646-2013-1061-05
Section
Статті