Minimal and totally geodesic unit sections of the unit sphere bundles

Keywords: Sasaki metric, unit sphere bundle, totally geodesic unit section

Abstract

We consider a real vector bundle $\E$ of rank $p$ and a unit sphere bundle $\E_1\subset \E$ over the Riemannian $M^n$ with the Sasaki-type metric. A unit section of $\E_1$ gives rise to a submanifold in $\E_1$. We give some examples of local minimal unit sections and present a complete description of local totally geodesic unit sections of $\E_1$ in the simplest non-trivial case $p=2$ and $n=2$.

Downloads

Download data is not yet available.

References

Borisenko A., Yampolsky A. Riemannian geometry of bundles.// Uspehi Mat. Nauk. 1991. - 26/6. - P. 51-95; Engl. transl.: Russian Math. Surveys, 1991. - 46/6. - P. 55-106.

Gluck H., Ziller W. On the volume of a unit vector field on the threesphere.// Comm. Math. Helv., 1986. - 61. - P. 177-192.

Gil-Medrano O.,Llinares-Fuster E. Minimal unit vector fields. // Tˆohonku Math. J., 2002. - 54. - P. 71-84.

Yampolsky A. On the mean curvature of a unit vector field. // Math. Publ. Debrecen, 2002. - 60/1-2. - P. 131-155

Yampolsky A. A totally geodesic property of Hopf vector fields. // Acta Math. Hungar., 2003. - 101/1-2. - P. 93-112.

C.M. Wood. Harminic sections and equivariant harmoc maps. // Manuscripta Math., 1997, - 94. - P. 1-13.

C.M. Wood. Harmonic sectios of homogeneous fiber bundles // Diff. Geom. Appl., 2003. - 19. - P. 193-210

Yampolsky A. On special tipes of minimal and totally geodesic unit vector fields. // Seventh Int. Conf. on Geometry, Integrabilityand Quantization, June 2 – 10, 2005, Varna, Bulgaria, P. 290-304

Dombrowski P. On the geometry of tangent bundle, J. Reine Angew. Math., 1962, 210/1-2 , 73–88.

Kowalski O. Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 1971, 250 , 124–129.

Yampolsky A., Full Description of Totally Geodesic Unit Vector Fields on 2-dimensional Riemannian Manifold. // Matematicheskaya Fizika, Analiz, Geometriya 2004. - 11/3. - P. 355-365.

Аминов Ю.А. О поверхностях в E4 со знакопостоянным гауссовым кручением.// Укр. геом. сб., 1988, - вып. 31. - P. 3-14.

Yampolsky A.A. On intrinsinc geometry of a unit vector field. // Comment. Math. Univ. Carol., 2002, - 43/2. - P. 131-155.

Boeckx E., Vanhecke L. Harmonic and minimal radial vector fields. // Acta Math. Huhgar., 2001, - 90. - P. 317-331.

Boeckx E., Vanhecke L. Harmonic and minimal vector fields on tangent and unit tangent bundles. // Differential Geom. Appl., 2000, - 13. - P. 77-93.

Gil-Medrano O.,Llinares-Fuster E. Second variation of volume and energy of vector fields. Stability of Hopf vector field. // Math. Ann., 2001, - 320. - P. 531-545.

Gil-Medrano O. Relationship between volume and energy of vector fields. // Diff. Geom. Appl., 2001. - 15. - P. 137-152.

Gonz´alez-D´avila J.C., Vanhecke L. Examples of minimal unit vector fields.// Ann Global Anal. Geom., 2000. - 18. - P. 385-404.

Kobayashi S., Nomizu K. Foundations of differential geometry, Vol. 1, Interscience Publ., 1963.

Published
2012-11-24
Cited
How to Cite
Yampolsky, A. L. (2012). Minimal and totally geodesic unit sections of the unit sphere bundles. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, (1030), 54-70. https://doi.org/10.26565/2221-5646-2012-1030-05
Section
Статті