Interaction of the eddy flows in the Bryan-Pidduck model
Abstract
The interaction between the two eddy streams of a gas of rough spheres is investigated. A bimodal distribution with a Maxwellian modes of a special form is used. Different sufficient conditions for the minimization of the integral discrepancy between the sides of the Bryan-Piddaсk equation is obtained.
Downloads
References
С.Чепмен, Т.Каулинг. Математическая теория неоднородных газов, пер. с англ. Е.В.Малиновской, М. : 1960г. - гл. 11 - C. 240-249
Cercignani C, Lampis M. On the kinetic theory of a dense gas of rough spheres. J. Statist. Phys. 1988; 53, P. 655-672.
Gordevsky V.D. Explicit approximate solutions of the Boltzmann equation for the model of rough spheres − Reports of the National Academy of Sciences of Ukraine(2000), 4, P. 10-13 (Ukrainian).
Gordevskyy V.D. Approximate Billow Solutions of the Kinetic Âróàn-Pidduck Equation − Math. Meth. Appl. Sci. - 2000. - 23. - P. 1121-1137.
Карлеман Т. Математические задачи кинетической теории газов. М. : ИИЛ, (пер. с франц.). 1960. - 118 с.
Grad H. On the kinetic theory of race ed gases.//Comm. Pure and Appl. Math., - 1949. - 2, 4 - P. 331-407.
Фридлендер О.Г. Локально-максвелловские решения уравнения Больцмана //Прикладная математика и механика.-1965. -29, №5. - C. 973-977.
Gordevskyy V.D. On the non-stationary Maxwellians // Math. Meth. Appl. Sci. - 2004. - 27. - P. 231-247.
Черчиньяни К. Теория и приложения уравнения Больцмана. - М. : Мир, 1978. - 495 с.
Коган М.Н. Динамика разреженного газа. - М. : Наука, 1967. - 440 с.
Гордевский В.Д., Гукалов А.А. Максвелловские распределения в модели шероховатых сфер // Укр. мат. журн. - 2011. - 63. - №5. - С. 629-639.
Gordevskyy V.D. An approximate bi ow solution of the Boltzmann equation. Theoret. Math. Phys. 1998; 114. - 1. - P. 126-136.
Gordevskyy V.D., Sysoyeva Yu.A. Interaction between non-uniform ows in a gas of rough spheres // Matem. fiz., analiz, geom. - 2002. - 9. - 2. - P. 285-293.
Гордевский В.Д., Гукалов А.А. Взаимодействие смерчевых потоков в модели Бриана-Пиддака // Вiсник Харкiвського нацiонального унiверситету iм. В.Н. Каразiна. Cер. Maтeмaтикa, приклaднa мaтeмaтикa i механiка. - 2011. - №990, С. 27-41.
Gordevsky V.D. Trimodal approximate solutions of the non-linear Boltzmann equation // Math. Meth. Appl. Sci. - 1998. - Vol. 21. P. 1479-1494
Гордевский В.Д. Вихри в газе из твердых сфер // Теор. и мат. физика. - 2003. -Т. 135, 2. - С. 303-314.
The copyright holder is the author.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. (Attribution-Noncommercial-No Derivative Works licence).
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).