Mathematical model of liver regeneration processes: homogeneous approximation

Keywords: mathematical model; liver regeneration; homogeneous approximation

Abstract

This paper deals with the rules and the mechanisms regulation of liver regeneration. The generalized mathematical model was developed. This model has a explicit dependence on the control parameters. To solve this problem there were accepted such assumptions: homogeneous approximation; small toxic factors.

Downloads

Download data is not yet available.

Author Biographies

V. V. Karieva, V. N. Karazin Kharkiv National University

ResearcherID:   V-5283-2018

 

 

S. L. Lvov, V. N. Karazin Kharkiv National University

ResearcherID: V-6342-2018

 

 

 

References

B. Christ, U. Dahmen, K-H. Herrmann, M. Konig, JR. Reichenbach, T. Ricken, J. Schleicher, L. Ole Schwen, S. Vlaic, N.Waschinsky. Computational Modeling in Liver Surgery. Frontiers in Physiology. - 2017. - Vol. 8. Article 906. - P.1- 26. DOI: 10.3389/fphys.2017.00906

Virtual Liver Network: A major national initiative funded by the German Federal Ministry for Education and Research, 2010- 2015. - http://www.virtual-liver.de/

LiSyM - Liver Systems Medicine: Research network of German centers and institutions, 2016- 2020. - http://www.lisym.org/

D. Cook, B. A. Ogunnaike, R. Vadigepalli. Systems analysis of non-parenchymal cell modulation of liver repair across multiple regeneration models. BMC Systems Biology, - 2015. - Vol. 9:71. - P.1- 24. DOI: 10.1186/s12918-015-0220-9.

Ye. Dayong, Zh. Minjie, V. Athanasios. Computational Modeling in Liver Surgery. IEEE Transactions on Systems, Man, and Cybernetics. - 2017. - Vol. 47. No. 3. - P. 441- 462.

M. Hwang, M. Garbey, S. A. Bercali, R. Tran-Son-Tay. Rule-Based Simulation of Multi-Cellular Biological SystemsA Review of Modeling Techniques. Cellular and Molecular Bioengineering. - 2009. - Vol. 2(3). - P. 285- 294.

H. Holzhutter, D. Drasdo, T. Preusser, J. Lippert, A.M. Henney. The virtual liver: a multidisciplinary, multilevel challenge for systems biology. WIREs Syst Biol Med. - 2012. - Vol. 4(3). - P.221- 235.

K. Jungerman. Metabolic zonation of liver parenchyma. Semin Liver Dis. - 1988. - Vol. 8. - P. 329- 341.

K. Jungermann, T. Kietzmann. Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology. - 2000. - Vol. 31. - P. 255- 260.

MR. Alison, S. Islam, S. Lim. Stem cells in liver regeneration, brosis and cancer: the good, the bad and the ugly. J Pathol. - 2009. - Vol. 217(2): - P. 282- 298.

KS. Zaret, M. Grompe. Generation and regeneration of cells of the liver and pancreas. Science. - 2008. - Vol. 322. - P. 1490- 1494.

M. Tanaka, T. Itoh, N. Tanimizu, A. Miyajima. Liver stem/progenitor cells: their characteristics and regulatory mechanisms. J Biochem. - 2011. - Vol. 149. - P. 231- 239.

Y. Miyaoka, A. Miyajima. To divide or not to divide: revisiting liver regeneration. Cell Division. - 2013. - Vol. 8(1):8. - P.1- 12. DOI:10.1186/1747- 1028-8-8.

K. Mahmoodi, B. West, P. Grigolini. Self-organizing complex networks: individual versus global rules. Frontiers in Physiology. - 2017. - Vol. 8. Article 478. - P.1- 11. DOI:10.3389/fphys.2017.00478.

N. W. Watkins and others. 25 years of self-organized criticality: concepts and controversies. Space Science Reviews. - 2016. - Vol. 198(1-4) - P. 3- 44.

J. M. Cushing. Integrodierential Equations and Delay Models in Population Dynamics. Springer-Verlag Berlin Heidelberg. - 1977. - Vol. 20 - 196 p.

C. Hutchison, D. M. Glover. Cell Cycle Control. Frontiers in molecular biology. - 1995. - Vol. 10. - 304 p.

K. J. Barnum, M. J. O'Connell. Cell Cycle Regulation by Checkpoints. Methods Mol Biol. - 2014. - Vol. 1170. - P. 29- 40.

F. Marongiu et al. Hyperplasia vs Hypertrophy in Tissue Regeneration after Extensive Liver Resection. World Journal of Gastroenterology. - 2017. - Vol. 23(10). - P. 1764- 1770.

S. Fulda, A. M. Gorman, O. Hori, A. Samali. Cellular Stress Responses: Cell Survival and Cell Death. International Journal of Cell Biology. - 2010. - P. 1- 23.

Citations

Different strategies in the liver regeneration processes. Numerical experiments on the mathematical model
(2020) V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics
Crossref

Published
2018-10-22
Cited
How to Cite
Karieva, V. V., & Lvov, S. L. (2018). Mathematical model of liver regeneration processes: homogeneous approximation. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 87, 29-41. https://doi.org/10.26565/2221-5646-2018-87-03
Section
Статті