Approximation of classes of Poisson integrals by Fejer sums

Keywords: asymptotic equality; Poisson integrals; Fejer sums

Abstract

For upper bounds of the deviations of Fejer sums taken over classes of periodic functions that admit analytic extensions to a fixed strip of the complex plane, we obtain asymptotic equalities. In certain cases, these equalities give a solution of the corresponding Kolmogorov-Nikolsky problem.

Downloads

Download data is not yet available.

Author Biographies

O. O. Novikov, Donbass State Pedagogical University, Slov'yansk, 19 G. Batuka, 84116

Oleg Novikov. ResearcherID:  V-5638-2018 

O. G. Rovenska, Donbass State Engineering Academy, Kramatorsk, 72 Akademicheskaya, 84313

Olga Rovenska:  ResearcherID: V-5628-2018

Scopus Author ID: 57194348450

Yu. A. Kozachenko, Donbass State Pedagogical University, Slov'yansk, 19 G. Batuka, 84116

Yulia A. Kozachenko: ResearcherID:  V-6517-2018

 

References

A.I. Stepanec. Solution of the Kolmogorov-Nikol'skij problem for the Poisson integrals of continuous functions. Mat. Sb., 2001. - 192(1). - P. 113-138 (in Russian).

S.M. Nikolskiy. Approximation of the functions by trigonometric polynomials in the mean. Izv. Acad. Nauk. SSSR, Ser. Mat., 1946. -10(3). - P. 207-256 (in Russian).

S.B. Stechkin. Estimation of the remainder of Fourier series for the differentiable functions. Tr. Mat. Inst. Acad. Nauk SSSR. - 1980. - 145. - P. 126-151 (in Russian).

V.I. Rukasov, S.O. Chaichenko. Approximation of the classes of analytical functions by de la Vallee-Poussin sums. Ukr. Math. J. - 2002. - 54. - P. 2006-2024.

A.S. Serdyuk. Approximation of Poisson integrals by de la Vallee Poussin sums. Ukr. Math. J. - 2004. - 56. - P. 122-134.

V.V. Savchuk, M.V. Savchuk, S.O. Chaichenko. Approximation of analytic functions by de la Vallee Poussin sums. Mat. Stud. - 2010. - 34(2). - P. 207-219 (in Ukrainian).

O.O. Rovenska, O.O. Novikov. Approximation of Poisson integrals by repeated de la Vallee Poussin sums. Nonl. Oscil. - 2010. - 13. - P. 108-111.

V.E. Velichko, O.A. Novikov, O.G. Rovenskaya. V.I. Rukasov. Approximation of analytic functions by repeated de la Vallee Poussin sums. Tr. Inst. Prikl. Mat. Mekh. - 2011. - 22. - P. 33-42 (in Rusian).

O.A. Novikov, O.G. Rovenska. Approximation of classes of Poisson integrals by Fejer sums. Computer Research and Modeling. - 2015. - 7 (4). - P. 813-819 (in Russian).

O.O. Novikov, O.G. Rovenska, Yu.V. Kozachenko. Approximation of Poussin integrals by Fejer sums. Modern problems of probability theory and mathematical analysis. Scientific conference, Vorohta, 24-27 February, 2016, P. 110 (in Ukrainian).

O.G. Rovenska, O.O. Novikov. Approximation of analytic periodic functions by linear means of Fourier series. Cheb. Sb. - 2016. - 17 (2). - P. 170-183 (in Russian).

O.Novikov, O. Rovenska. Approximation of Classes of Poisson Integrals by Repeated Fejer Sums. Lobachevskii Journal of Mathematics. - 2017. -38. - P. 502-509.

O.O. Novikov, O.G. Rovenska. Approximation of periodic analytic functions by Fejer sums. Mat. Stud. - 2017. - 47. - P. 196-201.

A.I. Stepanec, Classication and Approximation of Periodic Functions. 1987. Naukova Dumka, Kiev, 268 p. (in Russian).

A.I. Stepanec, Classication and Approximation of Periodic Functions. 1995. Dordrecht, Kluwer, 393 p.

Citations

APPROXIMATION OF CLASSES OF POISSON INTEGRALS BY REPEATED FEJER SUMS
Rovenska O. (2020) Bukovinian Mathematical Journal
Crossref

Published
2018-02-10
Cited
How to Cite
Novikov, O. O., Rovenska, O. G., & Kozachenko, Y. A. (2018). Approximation of classes of Poisson integrals by Fejer sums. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 87, 4-12. https://doi.org/10.26565/2221-5646-2018-87-01
Section
Статті