Some generalizations of p-loxodromic functions

  • A. Ya. Khrystiyanyn Ivan Franko National University of Lviv
  • Dz. V. Lukivska Ivan Franko National University of Lviv
Keywords: loxodromic function; p-loxodromic function; the Schottky-Klein prime function

Abstract

Розглянуто функцiональне рiвняння $f(qz) = p(z)f(z), z ∈ C\{0}, q ∈ C\{0}, |q| < 1$. При певних фiксованих елементарних функцiях p(z) знайдено його мероморфнi розв’язки. Цi розв’язки є деякими узагальненнями p-локсодромних функцiй i можуть зображатися за допомогою первинної функцiї Шотткi-Кляйна, як i класичнi p-локсодромнi функцiї.

Downloads

Download data is not yet available.

References

Crowdy D.G., Geometric function theory: a modern view of a classical subject // IOP Publishing Ltd and London Mathematical Society, Nonlinearity, 2008. – 21 (10). – T205-T219. DOI: 10.1088/0951-7715/21/10/T04

P. Ebenfelt, B. Gustafsson, D. Khavinson, M. Putinar. Quadrature Domains and Their Applications: The Harold S. Shapiro Anniversary Volume. –
Germany, 2006.

Hellegouarch Y. Invitation to the Mathematics of Fermat-Wiles. – Academic Press, 2002.

Hushchak O., Kondratyuk A. The Julia exceptionality of loxodromic meromorphic functions // Visnyk of the Lviv Univ., Series Mech. Math., 2013.
– 78. – P. 35-41.

Khoroshchak V.S., Khrystiyanyn A.Ya., Lukivska D.V. A class of Julia exceptional functions // Carpathian Math. Publ., 2016. – 8 (1). – C. 172–180.
DOI: 10.15330/cmp.8.1.172-180

Khoroshchak V.S., Kondratyuk A. A. The Riesz measures and a representation of multiplicatively periodic δ-subharmonic functions in a punctured euclidean space // Mat. Stud., 2015. – 43 (1).– P. 61-65.

Khoroshchak V.S., Sokulska N. B. Multiplicatively periodic meromorphic functions in the upper halfplane // Mat. Stud., 2014. – 42 (2). – P. 143-148.

Khrystiyanyn A.Ya., Kondratyuk A. A. Modulo-loxodromic meromorphic function in C\{0} // Ufa. Math. J., 2016. – 8 (4). – P. 156-162.

Klein F. Zur Theorie der Abel’schen Functionen, 1890. – Math. Ann. – 36. – 1-83. DOI: 10.1007/BF01199432

Serdjo Kos, Tibor K. Pog´any. On the Mathematics of Navigational Calculations for Meridian Sailing // Electronic Journal of Geography and
Mathematics, 2012.

James Marcotte, Matthew Salomone. Loxodromic Spirals in M. C. Escher’s Sphere Surface // Journal of Humanistic Mathematics, 2014. – 4 (2). – P. 25-
46. DOI. 10.5642/jhummath.201402.04

Rausenberger O. Lehrbuch der Theorie der Periodischen Functionen Einer variabeln. – Leipzig: Druck und Ferlag von B.G.Teubner, 1884.

Schottky F. Uber eine specielle Function welche bei einer bestimmten linearen ¨Transformation ihres Arguments unver¨andert bleibt // J. Reine Angew. Math., 1887. – 101 . – P. 227-272.

Valiron G. Cours d’Analyse Mathematique, Theorie des fonctions. 2nd Edition. – Paris: Masson et.Cie., 1947.
Published
2017-12-29
Cited
How to Cite
Khrystiyanyn, A. Y., & Lukivska, D. V. (2017). Some generalizations of p-loxodromic functions. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 86, 18-25. https://doi.org/10.26565/2221-5646-2017-86-03
Section
Статті