Some generalizations of p-loxodromic functions
Abstract
Розглянуто функцiональне рiвняння $f(qz) = p(z)f(z), z ∈ C\{0}, q ∈ C\{0}, |q| < 1$. При певних фiксованих елементарних функцiях p(z) знайдено його мероморфнi розв’язки. Цi розв’язки є деякими узагальненнями p-локсодромних функцiй i можуть зображатися за допомогою первинної функцiї Шотткi-Кляйна, як i класичнi p-локсодромнi функцiї.
Downloads
References
P. Ebenfelt, B. Gustafsson, D. Khavinson, M. Putinar. Quadrature Domains and Their Applications: The Harold S. Shapiro Anniversary Volume. –
Germany, 2006.
Hellegouarch Y. Invitation to the Mathematics of Fermat-Wiles. – Academic Press, 2002.
Hushchak O., Kondratyuk A. The Julia exceptionality of loxodromic meromorphic functions // Visnyk of the Lviv Univ., Series Mech. Math., 2013.
– 78. – P. 35-41.
Khoroshchak V.S., Khrystiyanyn A.Ya., Lukivska D.V. A class of Julia exceptional functions // Carpathian Math. Publ., 2016. – 8 (1). – C. 172–180.
DOI: 10.15330/cmp.8.1.172-180
Khoroshchak V.S., Kondratyuk A. A. The Riesz measures and a representation of multiplicatively periodic δ-subharmonic functions in a punctured euclidean space // Mat. Stud., 2015. – 43 (1).– P. 61-65.
Khoroshchak V.S., Sokulska N. B. Multiplicatively periodic meromorphic functions in the upper halfplane // Mat. Stud., 2014. – 42 (2). – P. 143-148.
Khrystiyanyn A.Ya., Kondratyuk A. A. Modulo-loxodromic meromorphic function in C\{0} // Ufa. Math. J., 2016. – 8 (4). – P. 156-162.
Klein F. Zur Theorie der Abel’schen Functionen, 1890. – Math. Ann. – 36. – 1-83. DOI: 10.1007/BF01199432
Serdjo Kos, Tibor K. Pog´any. On the Mathematics of Navigational Calculations for Meridian Sailing // Electronic Journal of Geography and
Mathematics, 2012.
James Marcotte, Matthew Salomone. Loxodromic Spirals in M. C. Escher’s Sphere Surface // Journal of Humanistic Mathematics, 2014. – 4 (2). – P. 25-
46. DOI. 10.5642/jhummath.201402.04
Rausenberger O. Lehrbuch der Theorie der Periodischen Functionen Einer variabeln. – Leipzig: Druck und Ferlag von B.G.Teubner, 1884.
Schottky F. Uber eine specielle Function welche bei einer bestimmten linearen ¨Transformation ihres Arguments unver¨andert bleibt // J. Reine Angew. Math., 1887. – 101 . – P. 227-272.
Valiron G. Cours d’Analyse Mathematique, Theorie des fonctions. 2nd Edition. – Paris: Masson et.Cie., 1947.
The copyright holder is the author.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. (Attribution-Noncommercial-No Derivative Works licence).
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).