A сondition for the existence of a unique equilibrium position of the Cauchy problem for linear matrix differential algebraic equations.
Abstract
Sufficient conditions for the existence of a unique equilibrium position of the Cauchy problem for differential-algebraic equations are proposed. The paper proposes a constructive scheme of the equilibrium position in the Cauchy problem in the general case, when a linear operator L, corresponding to homogeneous of the equation, has no inverse.
Downloads
References
Чуйко С.М. Обобщенное матричное дифференциально-алгебраическое уравнение // Український математичний вiсник, 2015. – 12, №1. – С. 11 –26.
Chuiko S.M. The Green’s operator of a generalized matrix linear differential-algebraic boundary value problem // Siberian Mathematical Journal, 2015. –56, №4. – P. 752–760.
Boichuk A.A., Krivosheya S.A. A Critical Periodic Boundary Value Problem for a Matrix Riccati Equations // Differential Equations, 2001. – 37, №4. –
P. 464–471.
Chuiko S.M. Generalized Green Operator of Noetherian boundary-value problem for matrix differential equation // Russian Mathematics, 2016. – 60,
№8. – P. 64–73.
Campbell S.L. Singular Systems of differential equations. – San Francisco –London – Melbourne: Pitman Advanced Publishing Program, 1980. – 178 p.
Чистяков В.Ф. Алгебро-дифференциальные операторы с конечномерным ядром. – Новосибирск; Наука, 1996. – 280 с.
Boichuk A.A., Pokutnyi A.A., Chistyakov V.F. Application of perturbation theory to the solvability analysis of differential algebraic equations //
Computational Mathematics and Mathematical Physics, 2013. – 53. – №6. – P. 777 – 788.
Boichuk A.A., Krivosheya S.A. Criterion of the solvability of matrix equations of the Lyapunov type // Ukrainian Mathematical Journal, 1998. – 50, №8. –
P. 1162 – 1169.
Чуйко С.М. О решении матричных уравнений Ляпунова // Вiсник Харкiвського нацiонального унiверситету iм. В.Н.Каразiна. Серiя «Математика, прикладна математика i механiка». – № 1120, 2014. – C. 85–94.
Беллман Р. Введение в теорию матриц. – М.: Наука, 1969. – 367 с.
Чуйко С.М. Элементы теории линейных матричных уравнений. — Славянск: Изд. Б.И. Маторина, 2017. — 164 c.
Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. – М.: Наука, 1986. – 288 с.
Chuiko S.M. On the regularization of a linear Fredholm boundary-value problem by a degenerate pulsed action // Journal of Mathematical Sciences,
2014. – 197, №1. – P. 138–150.
Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. – М.: Наука, 1984. – 318 с.
Chuiko S. Weakly nonlinear boundary value problem for a matrix differential equation // Miskolc Mathematical Notes, 2016. – 17, №1. – P. 139–150.
Коробов В.И., Бебия М.О. Стабилизация одного класса нелинейных систем, неуправляемых по первому приближению // Доп. НАН України,
2014. – №2. – С. 20–25.
Бебия М.О. Стабилизация систем со степенной нелинейностью // Вiсник Харкiвського нацiонального унiверситету iм. В.Н.Каразiна. Серiя «Математика, прикладна математика i механiка», 2014. – №1120, Вып. 69. – C. 75–84.
Чуйко С.М. О решении билинейного матричного уравнения // Чебышевский сборник, 2016. – 17, Вып. 2. – С. 196–205.
The copyright holder is the author.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. (Attribution-Noncommercial-No Derivative Works licence).
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).