Random walks on nite groups with conjugate class probability: algebraic approach.

  • А. Л. Вишневецкий Харківський національний автомобільно-дорожній університет
Keywords: probability; finite group; convergency

Abstract

Under well known conditions an n-fold convolution of probability on nite group G converges to the uniform probability on G (n ). A lot of works estimate a rate of that convergence. The aim of the article is to obtain estimates of the rate for the probabilities that are constant on classes of conjugate elements of nite groups.

Downloads

Download data is not yet available.

References

P. Diaconis, Group Representations in Probability and Statistics. Institute of Mathematical Statistics, 1988. - 198 p.

L. Salo-Coste, Random walks on finite groups. In Probability on Discrete Structures. / H. Kesten, editor, Springer, 2004. - P. 263-340.
Published
2017-12-29
Cited
How to Cite
Вишневецкий, А. Л. (2017). Random walks on nite groups with conjugate class probability: algebraic approach. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 86, 4-9. https://doi.org/10.26565/2221-5646-2017-86-01
Section
Статті