To the generalization of the Newton-Kantorovich theorem.

Keywords: Newton-Kantorovich method; iterative scheme; nonlinear equation; pseudoinverse matrices.

Abstract

Constructive conditions for solvability are obtained, as well as an iterative scheme for finding solutions of the nonlinear equation that generalize the well-known Newton-Kantorovich theorem. The case of a nonlinear equation whose dimension does not coincide with the dimension of the unknown has been researched.

Downloads

Download data is not yet available.

References

Bogolyubov N.N., Mitropolsky J.A., Samoilenko A.M. The method of accelerated convergence in nonlinear mechanics. — Kiev: Scientific thought, 1969. — 248 pp.

Kantorovich L.V., Akilov G.P. Functional analysis. — Moscow: Nauka. — 1977. — 744 pp.

Dennis J. Schnabel R. Numerical methods of unconditional optimization and solving nonlinear equations. — Moscow: Mir. — 1988. — 440 pp.

Polyak B.T. The Newton method and its role in optimization and computational mathematics // Trudy ICA RAN. — 2006. — 28. — P. 48 — 66.

Boichuk A.A., Samoilenko A.M. Generalized inverse operators and Fredholm boundary-value problems (2-th edition). — Berlin; Boston: De Gruyter, 2016. — 298 pp.

Chuiko S.M., Boichuk I.A. An autonomous Noetherian boundary value problem in the critical case // Nonlinear Oscillations (N.Y.) — 12. — 2009. № 3, P. 405 — 416.

Chuiko S.M., Boichuk I.A., Pirus O.E. On the approximate solution of an autonomous boundary-value problem the Newton - Kantorovich method // Journal of Mathematical Sciences — 2013. — 189, № 5. — P. 867 — 881.

Chuiko S.M., Pirus O.E. On the approximate solution of autonomous boundary-value problems by the Newton method // Journal of Mathematical Sciences — 2013. — 191, № 3. — P. 449 — 464.

Gantmakher F.R. Matrix theory. — Moscow: Nauka. — 1988. — 552 pp.

Korobov V.I. Bebiya M.O. Stabilization of one class of nonlinear systems // Avtomat. i Telemekh. — 2017. — № 1. — P. 3 — 18.

Bebiya M.O. Stabilization of systems with power nonlinearity // Visnyk
of V.N.Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics. — 2014, № 1120. — Issue 69. — P. 75 — 84.

Chuiko S. Weakly nonlinear boundary value problem for a matrix differential equation // Miskolc Mathematical Notes. — 2016. — 17, № 1. — P. 139 — 150.

Campbell S.L. Singular Systems of differential equations. — San Francisco –London – Melbourne: Pitman Advanced Publishing Program. — 1980. — 178 p.

Chuiko S.M. The Green’s operator of a generalized matrix linear differentialalgebraic boundary value problem // Siberian Mathematical Journal. — 2015. —56, № 4. — P. 752 — 760.

Chuiko S.M. A generalized matrix differential-algebraic equation // Journal of Mathematical Sciences (N.Y.). – 2015. – 210, № 1. – P. 9 – 21.

Chuiko S.M. To the issue of a generalization of the matrix differentialalgebraic boundary-value problem // Journal of Mathematical Sciences. — 2017. — 227, № 1. — P. 16 — 32.
Published
2017-11-29
Cited
How to Cite
Chuiko, S. M. (2017). To the generalization of the Newton-Kantorovich theorem. Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 85, 62-68. https://doi.org/10.26565/2221-5646-2017-85-05
Section
Статті