The convergence of sequences of canonical potentials in the space L1,loc (C).

  • Nguyen Van Quynh Hanoi University of Industry
Keywords: canonical potential, Radon measure, widely convergence

Abstract

Potential theory is important in the theory of subharmonic and δ-subharmonic functions. In the article we sharpen Azarin’s variant on the convergence of the sequence of canonical potentials in the space L1,loc (C).

Downloads

Download data is not yet available.

References

Azarin V. S. Growth theory of subharmonic functions. / V. S. Azarin – Birkhanser, Basel, Boston, Berlin, 2009. – 259 p.

Landkof N.S. Foundations of modern potential theory. / N.S. Landkof – M .: GRFML, Science, 1966. – 515 p.

Grishin A.F., Nguyen Van Quynh, Poedintseva I.V. Representation theorems of δ-subharmonic functions / Visnyk of V.N.Karazin Kharkiv National University. Ser. "Mathematics, Applied Mathematics and Mechanics 2014. – N. 1133. – P. 56-75.

A. F. Grishin. Various types of convergence of sequences of δ-subharmonic functions. / A. F. Grishin, A. Chouigui, Math. sbornyk. 199, (2008). – P. 27–48.

Valiron G. Lectures on the General Theory of Integral Functions. / G. Valiron – Privat, Toulouse, 1923. – 234 p.

Levin B.Ya. Distribution of zeros of entire functions. / B.Ya. Levin – M .: GITTL, 1956. – 632 p.

Grishin A.F. On the proximate order. / AF Grishin„ I.V. Malyutina // Complex analysis, Mathematical physics. - Krasnoyarsk, 1998. – P. 10–24.

Grishin A.F. Abel and Tauberian theorems for integrals. / A. F. Grishin, I.V. Podiedtseva // Algebra and Analysis, 2014. – T.26, No 3, – P. 1–88.

Grishin A.F. Limit sets of Azarin for Radon measures. I / A.F. Grishin, Nguyen Van Quynh // Mat. Studii, 2015. – V. 43, No 1. – P. 94-99.

Kadets, V.M. A course of Functional Analysis / Kharkov National University, 2006. – 607 p.
Published
2017-12-27
Cited
How to Cite
Quynh, N. V. (2017). The convergence of sequences of canonical potentials in the space L1,loc (C). Visnyk of V. N. Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics, 85, 4-15. https://doi.org/10.26565/2221-5646-2017-85-01
Section
Статті