THERMODYNAMICS OF THE FERMI GAS IN A NANOTUBE

  • Yu. M. Poluektov Science Center “Kharkov Institute of Physics1, Akademicheskaya Str.,61108 Kharkov,Kharkоv V.N. Karazin National UniversitySq. Svobody 4, Kharkov, 61022, Ukraine https://orcid.org/0000-0002-3207-3226
  • A. A. Soroka Science Center “Kharkov Institute of Physics1, Akademicheskaya Str.,61108 KharkovKharkоv V.N. Karazin National UniversitySq. Svobody 4, Kharkov, 61022, Ukraine https://orcid.org/0000-0002-3073-1774
Keywords: Fermi particle, nanotube, thermodynamic functions, low-dimensional systems, equation of state, heat capacity, compressibility

Abstract

For the ideal Fermi gas that fills the space inside a cylindrical tube, there are calculated the thermodynamic characteristics in general form for arbitrary temperatures, namely: the thermodynamic potential, energy, entropy, equations of state, heat capacities and compressibilities. All these quantities are expressed through the introduced standard functions and their derivatives. The radius of the tube is considered as an additional thermodynamic variable. It is shown that at low temperatures in the quasi-one-dimensional case the temperature dependencies of the entropy and heat capacities remain linear. The dependencies of the entropy and heat capacities on the chemical potential have sharp maximums at the points where the filling of a new discrete level begins. The character of dependencies of thermodynamic quantities on the tube radius proves to be qualitatively different in the cases of fixed linear and fixed total density. At the fixed linear density these dependencies are monotonous and at the fixed total density they have an oscillating character.

Downloads

Download data is not yet available.

References

1. Ando T., Fowler A.B., Stern F. Electronic properties of two-dimensional systems // Rev. Mod. Phys. − 1982. − Vol. 54. −
P. 437-672.

2. Komnik Y.F. Physics of metal films. − Moscow: Atomizdat, 1979. − 264 p. (in Russian)

3. Dragunov V.P., Neizvestnyj I.G., Gridchin V.A. Fundamentals of nanoelectronics. − Moscow: Fizmatkniga, 2006. − 496 p. (in
Russian)

4. Vagner I.D. Thermodynamics of two-dimensional electrons on Landau levels // HIT J. of Science and Engineering A. − 2006. −
Vol. 3. − P. 102-152.

5. Freik D.M., Kharun L.T., Dobrovolska A.M. Quantum-size effects in condensed systems. Scientific and historical aspects //
Phys. and Chem. of Solid State. − 2011. − Vol. 12. − P. 9-26.

6. Shaginyan V.R., Popov K.G. Strongly correlated Fermi-systems: theory versus experiment // Nanostuctures. Mathematical
physics and modeling. − 2010. − Vol. 3. − P. 5-92.

7. Landau L.D., Lifshitz E.M. Statistical physics, Vol. 5. − Oxford: Butterworth-Heinemann, 1980. − 544 p.

8. Poluektov Yu.M., Soroka A.A. Thermodynamics of the Fermi gas in a quantum well // East Eur. J. Phys. − 2016. − Vol. 3,
No.4. − P. 4-21; arXiv:1608.07205 [cond-mat.stat-mech].

9. Tomonaga S., Remarks on Bloch’s method of sound waves applied to many-fermion problems // Progr. Theor. Phys. − 1950. −
Vol. 5. − P. 544-569.

10. Luttinger J.M. An exactly soluble model of a many-fermion system // J. Math. Phys. − 1963.− Vol. 4. − P. 1154-1162.

11. Deshpande V.V., Bockrath M., Glazman L.I., Yacoby A. Electron liquids and solids in one dimension // Nature. − 2010. − Vol. 464 (11). − P. 209-216.

12. Landau L.D., The theory of a Fermi liquid // Sov. Phys. JETP. − 1957. − Vol. 3. − P. 920-925.

13. Pines D., Nozières P. The theory of quantum liquids, Vol. I. − New York: Benjamin, 1966. − 149 p.
14. Abramowitz M., Stegun I. (Editors), Handbook of mathematical functions. − Moscow: Nauka, 1979. − 832 p.
Published
2017-10-20
Cited
How to Cite
Poluektov, Y. M., & Soroka, A. A. (2017). THERMODYNAMICS OF THE FERMI GAS IN A NANOTUBE. East European Journal of Physics, 4(3), 4-17. https://doi.org/10.26565/2312-4334-2017-3-01