HIGH LEVEL WASTES IMMOBILIZATION IN CERAMIC AND HYDRATED PHOSPHATE MATRIX

  • V. A. Shkuropatenko National Science Center “Kharkov Institute of physics and technology” 1, Academicheskaya Str., 61108, Kharkov, Ukraine
Keywords: phosphate ceramic, high level wastes, immobilization, synthesis, matrix, phase composition

Abstract

The results of experimental research for obtaining of phosphate matrix materials: fluorapatite Ca10(PO4)6F2, sodium zirconium phosphate NaZr2(PO4)3 and potassium magnesium phosphate KMgPO4·6H2O were presented. The evolution of phase composition in their synthesis was investigated. The optimal parameters for obtaining monophasic phosphate matrix materials were found. Possibility of obtaining powders of calcium Ca10(PO4)6F2 and strontium-containing Ca9Sr(PO4)6F2 fluorapatites by both solid phase reaction method with subsequent heat treatment and chemical co-precipitation method from solutions of the initial components was investigated. Nanosized zirconium orthophosphate powders NaZr2(PO4)3 were synthesized by the sol-gel method. Hydrated phosphatic matrices KMgPO4·6H2O by a chemical reaction between MgO and KH2PO4 in water at a room temperature were obtained. The requirements for high-level waste matrix were presented. The suitability of the use of synthetic phosphate materials as a matrix for the immobilization of high level nuclear wastes was determined.

Downloads

Download data is not yet available.

Author Biography

V. A. Shkuropatenko, National Science Center “Kharkov Institute of physics and technology” 1, Academicheskaya Str., 61108, Kharkov, Ukraine

References

Weber W.J., Navrotksy A., Stefanovsky S., Vance E.R., Vernaz E. Materials science of high-level nuclear waste immobilization // MRS Bulletin. – 2009. – Vol. 34. – No.1. – P.46-53.

Gramenickij E.N., Kotel'nikov A.R., Batanova A.M., Shhekina T.I., Plechov P.Ju. Eksperimental'naja i tehnicheskaja petrologija. – M.: Nauchnyj Mir, 2000. – 416 s.

Ewing R.C., Wang L.M. Phosphates as nuclear waste forms, Revier in mineralogy and geochemistry. – 2002. – Vol. 48. – P. 673–699.

Shabalin B.G. Konservirujushhie monacitopodobnye materialy dlja immobilizacii radioaktivnyh othodov i ih transformacija v estestvennyh uslovijah // Mineral. zhurnal. – 2006. – T.28. – No.1. – s.39-46.

Bros. R., Carpena J., Sere V., Beltritti A. Occurence of Pu and Fissiogenic REE in Hydrothermal Apatites from the Fossil Nuclear Reactor 16 at Oklo (Gabon) // Radiochimica Acta. – 1996. – Vol.74. – P.277-282.

Karpena Zhojel', Buae Loran, Laku Zhan-Lui. Sposob zahoronenija plutonija v apatitovoj keramike i produkt, poluchennyj s ispol'zovaniem etogo sposoba. Federal'naja sluzhba po intellektual'noj sobstvennosti, patentam i tovarnym znakam. – 1999. – zajavka №2001110070/06.

Shkuropatenko V.A., Tarasov R.V, Prudyvus E.A. i dr. Sintez stroncievogo ftorapatita na osnove pirofosfata kal'cija // Voprosy atomnoj nauki i tehniki. Serija: fizika radiacionnyh povrezhdenij i radiacionnoe materialovedenie. – 2012. – Vypusk 5 (81). – S. 98-105.

Sayenko S.Yu., Shkuropatenko V.A., Tarasov R.V., Prudyvus K.A., Savina S.A., Zykova A.V. Analyses of fluorapatite prepared by both chemical precipitation and solid phase reaction methods // PSE. – 2013. – Vol. 11. – No. 3. – P.279-284.

Kanazava T. Neorganicheskie fosfatnye materialy. – Kiev, Naukova dumka, 1998. – 297 c.

Belkin F.V., Gabelkov S.V., Tarasov R.V., Poltavcev N.S., Litvinenko L.M., Ryzhova T.P. Cezijsoderzhashhie fazy v drevesnyh zolah chernobyl'skoj zony // Problemi bezpeki atomnih stancіj і Chornobilja. – 2008. – Vyp. 11. – S.136-141.

Belkіn F.V., Tarasov R.V., Shkuropatenko V.A., Prudivus K.A., Mironova A.G., Litvinenko L.M. Shtuchnij ftorapatit dlja іmmobіlіzacіi zoly vіd spaljuvannja derevyny Chornobil's'koi zony // Jaderna ta radіacіjna bezpeka. – 2012. – 2(54). – S. 56-59.

Hae-Won Kim, Yoon-Jung Noh, Young-Hag Koh, Hyoun-Ee Kim, Hyun-Man Kim. Effect of CaF2 on densification and properties of hydroxyapatite-zirconia composites for biomedical applications // Biomaterials. – 2002. –Vol.23. – P.4113-4121.

Campayo L., Audubert F., Lartigue J.at all. Study of a phosphate-based material with rhabdophane structure for caesium immobilization: Synthesis, sintering and leaching behavior // J. Nucl. Mat. – 2008. – Vol.374. – P.101-108.

Tuljaganov D.U., Ismatov A.A. Sistema ftorapatit – anortit // Izvestija AN SSSR. Serija Neorganicheskie materialy. – 1990. – No.4. – S.886-887.

Orlova A.I., Zyrjanov V.N., Kotel'nikov A.R. i dr. Keramicheskie fosfatnye matricy dlja vysokoaktivnyh othodov. Povedenie v gidrotermal'nyh uslovijah // Radiohimija. – 1993. – T. 6. – S.120–126.

Naik A. H., Thakkar N.V., Dharwadkar S.R., Singh Mudher K.D., Venugopal V. Microwave assisted low temperature synthesis of sodium zirconium phosphate (NaZr2P3O12) // Journal of Thermal Analysis and Calorimetry. – 2004. – Vol.78. – P.707-713.

Wagh, A.S., Jeong, S.-Y. Chemically Bonded Phosphate Ceramics: I, A Dissolution Model of Formation // Journal of the American Ceramic Society. – 2003. – Vol. 86. – No.11. – P.1838–1844.

Wagh, A.S., Singh, D., Jeong, S.-Y. Chemically Bonded Phosphate Ceramics for Stabilization and Solidification of Mixed Waste, in Hazardous and Waste Treatment Technologies Handbook, C. H. Ho, Ed., CRC Press chapter 6. 3. 1. – 2000. – P.1-18.

Vinokurov S.E., Kulyako Yu.M., Slyunchev O.M., Rovnyi S.I., Wagh A.S., Maloney M.D., Myasoedov B.F. Magnesium potassium phosphate matrices for immobilization of high-level liquid wastes // Radiokhimiya. – 2009. – Vol. 51. – No. 1. – P.56-62.

Hanford K-Basin characterization overview, US EPA (2005). http://www.epa.gov/rpdweb00/docs/wipp/doeenclosure9_1.pdf

GOST R 50926-96. Othody vysokoaktivnye otverzhdennye. Obshhie tehnicheskie trebovanija. – M.: Gosstandart Rossii, 1996. – 6s.

Published
2016-04-23
Cited
How to Cite
Shkuropatenko, V. A. (2016). HIGH LEVEL WASTES IMMOBILIZATION IN CERAMIC AND HYDRATED PHOSPHATE MATRIX. East European Journal of Physics, 3(1), 49-60. https://doi.org/10.26565/2312-4334-2016-1-05