Second Harmonic Generation of High-Power Elliptical Beam in Thermal Quantum Plasma

Keywords: Elliptical Cross-section, Quantum Plasma, RP force, Electron Plasma Wave, Paraxial Theory, WKB approximation

Abstract

The current study investigates second harmonic generation of elliptical beam in thermal quantum plasma (TQP) by taking relativistic-ponderomotive (RP) forces together. There is change in mass of electrons due to RP force thereby producing change in background density profile in a direction transverse to main beam. The main beam gets self-focused. The established density gradients excites electron plasma wave (EPW) at pump wave frequency. The excited EPW further interacts with pump wave to produce second harmonic generation (SHG). The widely accepted WKB and paraxial approximations are employed for deriving the 2nd order ODEs for semi major and semi-minor axes of elliptical beam with normalized propagation distance and efficiency of second harmonics. Furthermore, the influence of varying suitable laser-plasma parameters on beam waist dynamics and efficiency of 2nd harmonics are also explored.

Downloads

Download data is not yet available.

References

S.C. Wilks, J.M. Dawson, W.B. Mori, T. Katsouleas, and M.E. Jones, “Photon accelerator,” Phys. Rev. Lett. 62, 2600 (1989). https://doi.org/10.1103/physrevlett.62.2600

K.A. Brueckner, and S. Jorna, “Laser-driven fusion,” Rev. Mod. Phys. 46, 325(1974). https://doi.org/10.1103/RevModPhys.46.325

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau, et al., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature, 431, 541(2004). https://doi.org/10.1038/nature02963

P.E. Young, H.A. Baldis, R.P. Drake, E.M. Campbell, and K.G. Estabrook, “Direct Evidence of Ponderomotive Filamentation in a Laser-Produced Plasma,” Phys. Rev. Lett. 61, 2336 (1988). https://doi.org/10.1103/physrevlett.61.2336

K. Walia, “Self-focusing of q-Gaussian beam in unmagnetized plasma and its impact on second harmonic generation,” Optik, 277, 170681 (2023). https://doi.org/10.1016/j.ijleo.2023.170681

A. Singh, and K. Walia, “Relativistic self-focusing and self-channeling of Gaussian laser beam in plasma,” Appl. Phys. B Lasers Opt. 101, 617 (2010). https://doi.org/10.1007/s00340-010-4230-4

P.B. Corkum, C. Rolland, and T. Rao, “Supercontinuum Generation in Gases,” Phys. Rev. Lett. 57, 2268 (1986). https://doi.org/10.1103/physrevlett.57.2268

P. Sprangle, E. Esarey, and J. Krall, “Laser driven electron acceleration in vacuum, gases, and plasmas,” Phys. Plasmas, 3, 2183 (1996). https://doi.org/10.1063/1.871673

W.F. Utlaut, and R. Cohen, “Modifying the ionosphere with intense radio waves,” Science, 174, 245(1971). https://doi.org/10.1126/science.174.4006.245

K. Walia, “Nonlinear Interaction of High Power Elliptical Laser Beam with Cold Collisionless Plasma,” J. Fusion Energ. 35, 446 (2016). https://doi.org/10.1007/s10894-016-0059-0

P. Kaw, G. Schmidt, and T. Wilcox, “Filamentation and trapping of electromagnetic radiation in plasmas,” Phys. Fluids, 16, 1522 (1973). https://doi.org/10.1063/1.1694552

A. Bers, I.P. Shkarofsky, and M. Shoucri, “Relativistic Landau damping of electron plasma waves in stimulated Raman scattering,” Physics of Plasmas. 16, 022104 (2009). https://doi.org/10.1063/1.3073678

D. Tripathi, T. Singh, A. Vijay, and K. Walia, “Second Harmonic Generation of q-Gaussian Laser Beam in Thermal Quantum Plasma,” J. Contemp. Phys. 60, 171(2025). https://doi.org/10.1134/s1068337225700574

K. Walia, “Propagation characteristics of a high-power beam in weakly relativistic-ponderomotive thermal quantum plasma,” Commun. Theor. Phys. 75, 95501 (2023). https://doi.org/10.1088/1572-9494/accf82

K. Walia, “Nonlinear interaction of high power beam in weakly relativistic and ponderomotive cold quantum plasma,” Optik, 219, 165040 (2020). https://doi.org/10.1016/j.ijleo.2020.165040

C. Deutsch, A. Bret, M.C. Firpo, L. Gremillet, E. Lefebvre, and A. Lifschitz, “Onset of coherent electromagnetic structures in the relativistic electron beam deuterium-tritium fuel interaction of fast ignition concern,” Laser Part. Beams, 26, 157 (2008). https://doi.org/10.1017/s0263034608000189

D. Tripathi, S. Kaur, A. Vijay, and K. Walia, “Nonlinear Dynamics of q-Gaussian Laser Beam in Collisional Plasma: Effect of Linear Absorption,” J. Contemp. Phys. 60, 16 (2025). https://doi.org/10.1134/s1068337225700409

G.A. Askaryan, “Effects of the Gradient of a Strong Electromagnetic Beam on Electrons and Atoms,” JETP, 15, 1088 (1962).

U. Teubner, and P. Gibbon, “High-order harmonics from laser-irradiated plasma surfaces,” Rev. Mod. Phys. 8, 445 (2009). https://doi.org/10.1103/revmodphys.81.445

J.A. Stamper, R.H. Lehmberg, A. Schmitt, M.J. Herbst, F.C. Young, J.H. Gardner, and S.P. Obenschain, “Evidence in the second‐harmonic emission for self‐focusing of a laser pulse in a plasma,” Phys. Fluids, 28, 2563–2569 (1985). https://doi.org/10.1063/1.865264

C. Winterfeldt, C. Spielmann, and G. Gerber, “Optimal control of high-harmonic generation,” Rev. Mod. Phys. 80, 117 (2008). https://doi.org/10.1103/revmodphys.80.117

L. Nugent-Glandorf, M. Scheer, D.A. Samuels, A.M. Mulhisen, E.R. Grant, X. Yang, V.M. Bierbaum, and S.R. Leone, “Ultrafast Time-Resolved Soft X-Ray Photoelectron Spectroscopy of Dissociating Br,” Phys. Rev. Lett. 87, 193002 (2001). https://doi.org/10.1103/physrevlett.87.193002

R.I. Tobey, M.E. Siemens, O. Cohen, M.M. Murnane, H.C. Kapteyn, and K.A. Nelson, “Ultrafast extreme ultraviolet holography: dynamic monitoring of surface deformation,” Opt. Lett. 32, 286-288 (2007). https://doi.org/10.1364/OL.32.000286

M. Bauer, C. Lei, K. Read, R. Tobey, J. Gland, M.M. Murnane, and H.C. Kapteyn, “Direct observation of Surface Chemistry Using Ultrafast Soft-X-Ray Pulses,” Phys. Rev. Lett. 87, 025501 (2001). https://doi.org/10.1103/physrevlett.87.025501

M.S. Sodha, J.K. Sharma, D.P. Tewari, R.P. Sharma, and S.C. Kaushik, “Plasma wave and second harmonic generation,” Plasma Phys. 20, 825 (1978). https://doi.org/10.1088/0032-1028/20/8/007

J. Parashar, and H.D. Pandey, “Second-harmonic generation of laser radiation in a plasma with a density ripple,” IEEE Trans. Plasma Sci. 20, 996 (1992). https://doi.org/10.1109/27.199564

F. Brunel, “Harmonic generation due to plasma effects in a gas undergoing multiphoton ionization in the high-intensity limit,” J. Opt. Soc. Am. B, 7, 521 (1990). https://doi.org/10.1364/josab.7.000521

K. Singh, and K. Walia, “Second Harmonic Generation of High Power Cosh-Gaussian Beam in Thermal Quantum Plasma: Effect of Relativistic and Ponderomotive Nonlinearity,” J. Contemp. Phys. 59, 244 (2024). https://doi.org/10.1134/s1068337224700488

K. Singh, and K. Walia, “Influence of Self-Focused Elliptical Laser Beam on Second Harmonic Generation in Cold Quantum Plasma,” J. Contemp. Phys. 59, 154 (2024). https://doi.org/10.1134/s1068337224700300

K. Walia, N. Mehra, and S. Pandit, “Propagation Characteristics of q-Gaussian Laser Beam in Cold Collisionless Plasma,” J. Contemp. Phys. 59, 378 (2024). https://doi.org/10.1134/s1068337225700203

K. Walia, “Effect of self-focusing of elliptical laser beam on second harmonic generation in collisionless plasma,” Optik, 127, 6618 (2016). https://doi.org/10.1016/j.ijleo.2016.04.043

S. Kaur, A.K. Sharma, and H.A. Salih, “Resonant second harmonic generation of a Gaussian electromagnetic beam in a collisional Magnetoplasma,” Phys. Plasmas, 16, 042509 (2009). https://doi.org/10.1063/1.3135230

N.H. Burnett, H.A. Baldis, M.C. Richardson, and G.D. Enright, “Harmonic generation in CO2 laser target interaction,” Appl. Phys. Lett. 31, 172 (1977). https://doi.org/10.1063/1.89628

R.L. Carman, D.W. Forslund, and J.M. Kindel, “Visible Harmonic Emission as a Way of Measuring Profile Steepening,” Phys. Rev. Lett. 46, 29 (1981). https://doi.org/10.1103/physrevlett.46.29

T. Singh, and K. Walia, “Impact of High-Power Cosh-Gaussian Beam on Second Harmonic Generation in Collisionless Magnetoplasma,” J. Contemp. Phys. 59, 254 (2024). https://doi.org/10.1134/s106833722470049x

N. Kant, and A.K. Sharma, “Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma,” J. Phys. D: Appl. Phys. 37, 998 (2004).

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science, 311, 189 (2006). https://doi.org/10.1126/science.1114849

L. Wei, and Y. Wang, “Quantum ion-acoustic waves in single-walled carbon nanotubes studied with a quantum hydrodynamic model,” Phys. Rev. B, 75, 193407 (2007). https://doi.org/10.1103/physrevb.75.193407

G. Shpatakovskaya, “Semiclassical model of a one-dimensional quantum dot,” J. Exp, Theor. Phys. 102, 466 (2006). https://doi.org/10.1134/s1063776106030095

Z. Chunyang, L. Zhanjun, Z. Shao-ping, and H. Xiantu, “Self-Focusing of High-Power Laser Beam through Plasma,” J. Plasma Fusion Res. 6, 333 (2004).

A.V. Andreev, “Self-consistent equations for the interaction of an atom with an electromagnetic field of arbitrary intensity,” J. Exp, Theor. Phys. Lett. 72, 238 (2000). https://doi.org/10.1134/1.1324018

D. Lai, “Matter in strong magnetic fields,” Rev. Mod. Phys. 73, 629 (2001). https://doi.org/10.1103/revmodphys.73.629

Y. Jung, and I. Murakami, “Quantum effects on magnetization due to ponderomotive force in cold quantum plasmas,” Phys. Lett. A, 373, 969 (2009). https://doi.org/10.1016/j.physleta.2009.01.024

M.S. Sodha, A.K. Ghatak, and V.K. Tripathi, Progress in Optics, (North Holland, Amsterdam, 1976).

S.A. Akhmanov, A. Sukhorukov, and R. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Uspekhi, 10, 609 (1968).

Published
2025-12-08
Cited
How to Cite
Walia, K., Singh, K., Vijay, A., & Tripathi, D. (2025). Second Harmonic Generation of High-Power Elliptical Beam in Thermal Quantum Plasma. East European Journal of Physics, (4), 542-549. https://doi.org/10.26565/2312-4334-2025-4-56