Advancements in Antiperovskite Structured Solids: A Comprehensive Review
Abstract
Antiperovskite-structured solids are attracting growing attention as a new class of multifunctional materials. Unlike conventional perovskites, their inverted cubic framework gives rise to unusual and highly tunable properties, from fast-ion conduction and giant magnetoresistance to superconductivity and negative thermal expansion. These different behaviors indicate promise for applications in areas such as solid-state batteries, energy-harvesting refrigeration, superconducting electronics, and thermal management. This review collates recent work in both experimental and theoretical research, emphasizing how a single simple cubic lattice can provide such a wide range of functionality. We argue that the structural versatility of antiperovskites is the common link between ionic transport, spin–lattice coupling, superconductivity, and thermal expansion. Recent advancements in Li- and Na-based solid electrolytes with high conductivity, giant magneto- and barocaloric responses, non-oxide superconductivity, and isotropic negative thermal expansion demonstrate that antiperovskites retain scientific importance and are increasingly viable competitors with the best of today’s functional materials.
Downloads
References
B. Dudley, BP statistical review of world energy, Energy economic, Centre for energy economics research and policy. British Petroleum (2018).
A. Roshan, G. Hou, Z. Zhu, Q. Yan, Q. Zheng, and G. Su, “Predicted lead-free perovskites for solar cells,” Chemistry of Materials 30, 718-728 (2018). https://doi.org/10.1021/acs.chemmater.7b04036
D.M. Hoat, “Structural, optoelectronic and thermoelectric properties of antiperovskite compounds Ae3PbS (Ae= Ca, Sr and Ba): a first principles study,” Physics Letters A, 383 1648-1654 (2019). https://doi.org/10.1016/j.physleta.2019.02.013
M.Y. Chern, D.A. Vennos, and F.J. DiSalvo, Synthesis, structure, and properties of anti-perovskite nitrides Ca3MN, M= P, As, Sb, Bi, Ge, Sn, and Pb, J. Solid State Chemistry 96, 415-425 (1992). https://doi.org/10.1016/s0022-4596(05)80276-2
U. Rani, P.K. Kamlesh, R. Agrawal, A. Shukla, and A.S. Verma, “Emerging study on lead‐free hybrid double perovskite (CH3NH3)2AgInBr6: potential material for energy conversion between heat and electricity,” Energy Technology, 10, 2200002 (2022). https://doi.org/10.1002/ente.202200002
U. Rani, P.K. Kamlesh, R. Agrawal, J. Kumari, and A.S. Verma, “Electronic and thermo‐physical properties of double antiperovskites X6SOA2 (X= Na, K and A= Cl, Br, I): a non‐toxic and efficient energy storage materials,” International Journal of Quantum Chemistry, 121, e26759 (2021). https://doi.org/10.1002/qua.26759
A. Dubey, N. Pandit, R. Singh, T.K. Joshi, B.L. Choudhary, P.K. Kamlesh, S. Al-Qaisi, et al., “Lead-free alternative cation (Ethylammonium) in organometallic perovskites for thermoelectric applications,” Journal of Molecular Modeling, 30, 77 (2024). https://doi.org/10.1007/s00894-024-05867-7
M. Rani, P.K. Kamlesh, S. Kumawat, U. Rani, G. Arora, and A.S. Verma, “Ab-initio calculations of structural, optoelectronic, thermoelectric, and thermodynamic properties of mixed-halide perovskites RbPbBr3−xIx (x= 0 to 3): applicable in renewable energy devices,” ECS Journal of Solid-State Science and Technology, 12, 083006 (2023). https://doi.org/10.1149/2162-8777/acec9c
U. Rani, P.K. Kamlesh, A. Shukla, and A.S. Verma, “Emerging potential antiperovskite materials ANX3 (A= P, As, Sb, Bi; X= Sr, Ca, Mg) for thermoelectric renewable energy generators,” Journal of Solid-State Chemistry, 300, 122246 (2021). https://doi.org/10.1016/j.jssc.2021.122246
U. Rani, P.K. Kamlesh, T.K. Joshi, S. Sharma, R. Gupta, S. Al-Qaisi, and A.S. Verma, “Alkaline earth-based antiperovskite AsPX3 (X Mg, Ca, and Sr) materials for energy conversion, efficient and thermoelectric applications,” Physica Scripta, 98, 075902 (2023). https://doi.org/10.1088/1402-4896/acd88a
A. Bouhemadou, and R. Khenata, “Ab initio study of the structural, elastic, electronic and optical properties of the antiperovskite SbNMg3,” Computational Materials Science, 39, 803-807 (2007). https://doi.org/10.1016/j.commatsci.2006.10.003
M. Bilal, S. Jalali-Asadabadi, R. Ahmad, and I. Ahmad, “Electronic properties of antiperovskite materials from state-of-the-art density functional theory,” J. Chemistry, 2015, 495131 (2015). https://doi.org/10.1155/2015/495131
V. Thangadurai, and W. Weppner, “Recent progress in solid oxide and lithium ion conducting electrolytes research,” Ionics, 12, 81-92 (2006). https://doi.org/10.1007/s11581-006-0013-7
Y. Zhang, Y. Zhao, and C. Chen, “Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites,” Physical Review B, 87, 134303 (2013). https://doi.org/10.1103/physrevb.87.134303
K. Kamishima, T. Goto, H. Nakagawa, N. Miura, M. Ohashi, N. Mori, and T. Kanomata, “Giant magnetoresistance in the intermetallic compound Mn3GaC,” Physical Review B, 63, 024426 (2000). https://doi.org/10.1103/physrevb.63.024426
Y. Sun, C. Wang, L. Chu, Y. Wen, M. Nie, and F. Liu, Low temperature coefficient of resistivity induced by magnetic transition and lattice contraction in Mn3NiN compound, Scripta Materialia 62, 686-689 (2010). https://doi.org/10.1016/j.scriptamat.2010.01.027
K. Asano, K. Koyama, and K. Takenaka, “Magnetostriction in Mn3CuN,” Applied Physics Letters, 92, 161909 (2008). https://doi.org/10.1063/1.2917472
G. Tang, X. Liu, S. Wang, T. Hu, C. Feng, C. Zhu, B. Zhu, and J. Hong, “Designing antiperovskite derivatives via atomic-position splitting for photovoltaic applications,” Materials Horizons, 11, 5320-5330 (2024). https://doi.org/10.1039/D4MH00526K
T. Hu, C. Wu, M. Li, H. Qu, X. Luo, Y. Hou, S. Li, et al., “Pressure-dependent optoelectronic properties of antiperovskite derivatives X3AsCl3 (X= Mg, Ca, Sr, Ba): a first-principles study,” Physical Chemistry Chemical Physics, 27, 4144-4151 (2025). https://doi.org/10.1039/d4cp03619k
P. Tong, B.S. Wang, and Y.P. Sun, “Mn-based antiperovskite functional materials: Review of research,” Chinese Physics B, 22, 067501 (2013). https://doi.org/10.1088/1674-1056/22/6/067501
K. Takenaka, and H. Takagi, “Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides,” Applied Physics Letters, 87, 261902 (2005). https://doi.org/10.1063/1.2147726
Y. Nakamura, K. Takenaka, A. Kishimoto, and H. Takagi, “Mechanical Properties of Metallic Perovskite Mn3Cu0.5Ge0.5N: High‐Stiffness Isotropic Negative Thermal Expansion Material,” J. American Ceramic Society, 92, 2999-3003 (2009). https://doi.org/10.1111/j.1551-2916.2009.03297.x
T. He, Q. Huang, A.P. Ramirez, Y. Wang, K.A. Regan, N. Rogado, and R.J. Cava, “Superconductivity in the non-oxide perovskite MgCNi3,” Nature, 411, 54-56 (2001). https://doi.org/10.1038/35075014
D. Fruchart, and F. Bertaut, “Magnetic studies of the metallic perovskite-type compounds of manganese,” J. Physical Society of Japan, 44, 781-791 (1978). https://doi.org/10.1143/jpsj.44.781
M. Moakafi, R. Khenata, A. Bouhemadou, F. Semari, A.H. Reshak, and M. Rabah, “Elastic, electronic and optical properties of cubic antiperovskites SbNCa3 and BiNCa3,” Computational Materials Science, 46, 1051-1057 (2009). https://doi.org/10.1016/j.commatsci.2009.05.011
M. Bilal, I. Ahmad, H.R. Aliabad, and S.J. Asadabadi, “Detailed DFT studies of the band profiles and optical properties of antiperovskites SbNCa3 and BiNCa3,” Computational Materials Science, 85, 310-315 (2014). https://doi.org/10.1016/j.commatsci.2013.12.035
C. Feng, C. Wu, X. Luo, T. Hu, F. Chen, S. Li, S. Duan, et al., “Pressure-dependent electronic, optical, and mechanical properties of antiperovskite X3NP (X= Ca, Mg): A first-principles study,” Journal of Semiconductors, 44, 102101 (2023). https://doi.org/10.1088/1674-4926/44/10/102101
I.R. Shein, and A.L. Ivanovskii, “Electronic band structure and chemical bonding in the new antiperovskites AsNMg3 and SbNMg3,” J. Solid State Chemistry, 177, 61-64 (2004). https://doi.org/10.1016/s0022-4596(03)00309-8
S.V. Ovsyannikov, and V.V. Shchennikov, “High-pressure routes in the thermoelectricity or how one can improve a performance of thermoelectrics,” Chemistry of Materials, 22, 635-647 (2010). https://doi.org/10.1021/cm902000x
A. Bouhemadou, R. Khenata, M. Chegaar, and S. Maabed, “First-principles calculations of structural, elastic, electronic and optical properties of the antiperovskite AsNMg3,” Physics Letters A, 371, 337-343 (2007). https://doi.org/10.1016/j.physleta.2007.06.030
T. Belaroussi, B. Amrani, T. Benmessabih, N. Iles, and F. Hamdache, “Structural and thermodynamic properties of antiperovskite SbNMg3,” Computational Materials Science, 43, 938-942 (2008). https://doi.org/10.1016/j.commatsci.2008.02.006
K. Amara, M. Zemouli, M. Elkeurti, A. Belfedal, and F. Saadaoui, “First-principles study of XNMg3 (X= P, As, Sb and Bi) antiperovskite compounds,” J. Alloys and Compounds, 576, 398-403 (2013). https://doi.org/10.1016/j.jallcom.2013.06.003
K. Haddadi, A. Bouhemadou, L. Louail, F. Rahal, and S. Maabed, “Prediction study of the structural, elastic and electronic properties of ANSr3 (A= As, Sb and Bi),” Computational Materials Science, 46, 881-886 (2009). https://doi.org/10.1016/j.commatsci.2009.04.028
M. Hichour, R. Khenata, D. Rached, M. Hachemaoui, A. Bouhemadou, A.H. Reshak, and F. Semari, “FP-APW+ lo study of the elastic, electronic and optical properties for the cubic antiperovskite ANSr3 (A= As, Sb and Bi) under pressure effect,” Physica B: Condensed Matter, 405, 1894-1900 (2010). https://doi.org/10.1016/j.physb.2010.01.069
J.M. Tarascon, and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, 414, 359-367 (2001). https://doi.org/10.1038/35104644
E. Quartarone, and P. Mustarelli, “Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives,” Chemical Society Reviews, 40, 2525-2540 (2011). https://doi.org/10.1039/C0CS00081G
J. C. Bachman, S. Muy, A. Grimaud, H. H. Chang, N. Pour, S. F. Lux, and Y. Shao-Horn, “Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction,” Chemical Reviews, 116, 140-162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563.s001
A.R. Rodger, J. Kuwano, and A.R. West, “Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X= Si, Ge, Ti; Y= P, as, V; Li4XO4-LiZO2: Z= Al, Ga, Cr and Li4GeO4-Li2CaGeO4,” Solid State Ionics, 15, 185-198 (1985). https://doi.org/10.1016/0167-2738(85)90002-5
H. J. Deiseroth, S. T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiß, and M. Schlosser, “Li6PS5X: a class of crystalline Li‐rich solids with an unusually high Li+ mobility,” Angewandte Chemie International Edition, 47, 755-758 (2008). https://doi.org/10.1002/anie.200703900
V. Thangadurai, S. Narayanan, and D. Pinzaru, “Garnet-type solid-state fast Li ion conductors for Li batteries: critical review,” Chemical Society Reviews, 43, 4714-4727 (2014). https://doi.org/10.1039/c4cs00020j
A. Martinez-Juarez, C. Pecharromán, J.E. Iglesias, and J.M. Rojo, “Relationship between activation energy and bottleneck size for Li+ ion conduction in NASICON materials of composition LiMM’(PO4)3; M, M’= Ge, Ti, Sn, Hf,” J. Physical Chemistry B, 102, 372-375 (1998). https://doi.org/10.1021/jp973296c
S.K. Moharana, and P.K.K. Padmanabhan, “Structural stability and ion transport mechanism of divalent cation doped anti-perovskites: Insights from molecular dynamics investigation,” Physica Scripta, 100, 095909 (2025). https://doi.org/10.1088/1402-4896/adfe40
L. Van Duong, M.T. Nguyen, and Y.A. Zulueta, “Unravelling the alkali transport properties in nanocrystalline A3OX (A= Li, Na, X= Cl, Br) solid state electrolytes. A theoretical prediction,” RSC Advances, 12, 20029-20036 (2022). https://doi.org/10.1039/d2ra03370d
S. Li, J.L. Zhu, Y.G. Wang, J.W. Howard, X.J. Lü, Y.T. Li, R.S. Kumar, et al., “Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X= Cl, Br),” Solid State Ionics, 284, 14-19 (2016). https://doi.org/10.1016/j.ssi.2015.11.027
C. Zener, “Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure,” Physical Review, 82, 403 (1951). https://doi.org/10.1103/physrev.82.403
S.A. Wolf, and D. Treger, “Spintronics: A new paradigm for electronics for the new millennium,” IEEE Transactions on Magnetics, 36, 2748-2751 (2000). https://doi.org/10.1109/20.908580
B.S. Wang, P. Tong, Y.P. Sun, L.J. Li, W. Tang, W.J. Lu, and W.H. Song, “Enhanced giant magnetoresistance in Ni-doped antipervoskite compounds GaCMn3−xNix (x= 0.05, 0.10),” Applied Physics Letters, 95, 222509 (2009). https://doi.org/10.1063/1.3268786
B.G. Shen, J.R. Sun, F.X. Hu, H.W. Zhang, and Z.H. Cheng, “Recent progress in exploring magnetocaloric materials,” Advanced Materials, 21, 4545-4564 (2009). https://doi.org/10.1002/adma.200901072
A.M. Tishin, “Magnetocaloric effect: Current situation and future trends,” J. Magnetism and Magnetic Materials, 316, 351-357 (2007). https://doi.org/10.1016/j.jmmm.2007.03.015
M.H. Yu, L.H. Lewis, and A.R. Moodenbaugh, “Large magnetic entropy change in the metallic antiperovskite Mn3GaC,” J. Applied Physics, 93, 10128-10130 (2003). https://doi.org/10.1063/1.1574591
S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, and S. Shamoto, “Local lattice distortion in the giant negative thermal expansion material Mn3Cu1−xGexN,” Physical Review Letters, 101, 205901 (2008). https://doi.org/10.1103/physrevlett.101.205901
K. Takenaka, T. Inagaki, and H. Takagi, “Conversion of magnetic structure by slight dopants in geometrically frustrated antiperovskite Mn3GaN,” Applied Physics Letters, 95, 132508 (2009). https://doi.org/10.1063/1.3243340
W.S. Kim, E.O. Chi, J.C. Kim, H.S. Choi, and N.H. Hur, “Close correlation among lattice, spin, and charge in the manganese-based antiperovskite material,” Solid State Communications, 119, 507-510 (2001). https://doi.org/10.1016/S0038-1098(01)00279-4
C.M.I. Okoye, “Optical properties of the antiperovskite superconductor MgCNi3,” J. Physics: Condensed Matter, 15, 833 (2003). https://doi.org/10.1088/0953-8984/15/6/310
S. Mollah, “The physics of the non-oxide perovskite superconductor MgCNi3,” J. Physics: Condensed Matter, 16, R1237 (2004). https://doi.org/10.1088/0953-8984/16/43/r01
T. Takayama, K. Kuwano, D. Hirai, Y. Katsura, A. Yamamoto, and H. Takagi, “Strong Coupling Superconductivity at 8.4 K in an Antiperovskite Phosphide SrPt3P,” Physical Review Letters, 108, 237001 (2012). https://doi.org/10.1103/physrevlett.108.237001
H. Zhang, Y. Zhu, Z. Li, P. Fan, W. Ma, and B. Xie, “High discharged energy density of polymer nanocomposites containing paraelectric SrTiO3 nanowires for flexible energy storage device,” J. Alloys and Compounds, 744, 116-123 (2018). https://doi.org/10.1016/j.jallcom.2018.02.052
M. Oudah, A. Ikeda, J. N. Hausmann, S. Yonezawa, T. Fukumoto, S. Kobayashi, and Y. Maeno, “Superconductivity in the antiperovskite Dirac-metal oxide Sr3−xSnO,” Nature Communications, 7, 13617 (2016). https://doi.org/10.1038/ncomms13617
J.S.O. Evans, “Negative thermal expansion materials,” J. Chemical Society, Dalton Transactions, 19, 3317-3326 (1999). https://doi.org/10.1039/A904297K
J.S.O. Evans, W.I.F. David, and A.W. Sleight, “Structural investigation of the negative-thermal-expansion material ZrW2O8,” Acta Crystallographica Section B: Structural Science, 55, 333-340 (1999). https://doi.org/10.1107/s0108768198016966
A.L. Goodwin, M. Calleja, M.J. Conterio, M.T. Dove, J.S.O. Evans, D.A. Keen, and M.G. Tucker, “Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6],” Science, 319, 794-797 (2008). https://doi.org/10.1126/science.1151442
P. Tong, D. Louca, G. King, A. Llobet, J.C. Lin, and Y.P. Sun, “Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1−xSnxNMn3,” Applied Physics Letters, 102, 041908 (2013). https://doi.org/10.1063/1.4790151
T. Hamada, and K. Takenaka, “Phase instability of magnetic ground state in antiperovskite Mn3ZnN: Giant magnetovolume effects related to magnetic structure,” J. Applied Physics, 111, 07A904 (2012). https://doi.org/10.1063/1.3670052
Y. Sun, X.Q. Chen, S. Yunoki, D. Li, and Y. Li, “New family of three-dimensional topological insulators with antiperovskite structure,” Physical Review Letters, 105, 216406 (2010). https://doi.org/10.1103/physrevlett.105.216406
L. Ding, C. Wang, L. Chu, J. Yan, Y. Na, Q. Huang, and X. Chen, “Near zero temperature coefficient of resistivity in antiperovskite Mn3Ni1−xCuxN,” Applied Physics Letters, 99, 251905 (2011). https://doi.org/10.1063/1.3671183
K. Shi, Y. Sun, J. Yan, S. Deng, L. Wang, H. Wu, and C. Wang, “Baromagnetic effect in antiperovskite Mn3Ga0.95N0.94 by neutron powder diffraction analysis,” Advanced Materials, 28(7), 3761-376 (2016). https://doi.org/10.1002/adma.201600310
D. Boldrin, E. Mendive-Tapia, J. Zemen, J.B. Staunton, T. Hansen, A. Aznar, and L.F. Cohen, “Multisite exchange-enhanced barocaloric response in Mn3NiN,” Physical Review X, 8, 041035 (2018). https://doi.org/10.1103/physrevx.8.041035
Copyright (c) 2025 Shrawan Kumar, Sushil Kumar Pathak, Deepak Sharma, Peeyush Kumar Kamlesh, Ajay Singh Verma

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



