Phase Transformations and Structural Transformations of Manganese Silicides in the Si-Mn System
Abstract
A comprehensive investigation of thermally induced phase transformations in the silicon-manganese (Si–Mn) system was conducted. The study utilized X-ray diffraction (XRD), Raman spectroscopy (including chemical Raman mapping), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM–EDS), deep-level transient spectroscopy (DLTS), and thermodynamic CALPHAD modeling. The sequence of transformations has been reliably reconstructed as follows: (i) interstitial incorporation of Mn and partial amorphization of the near-surface Si layer; (ii) nucleation and growth of MnSi (B20 structure, P2₁3); (iii) stabilization of the higher silicide phase Mn₄Si₇ under Si-rich conditions; (iv) at T ≫ 900 °C, a partial reverse transformation to MnSi. DLTS analysis revealed three electrically active deep-level centers with activation energies of Eс–0.53 eV, Eс–0.43 eV, and Eс–0.20 eV (σn ≈ 10⁻¹⁶–10⁻¹⁵ cm²), which correlate with the MnSi → Mn₄Si₇ transition and interface traps at the “silicide/Si” boundary. CALPHAD modeling confirmed negative Gibbs free energies of formation (ΔGf) and identified thermodynamic stability windows for MnSi (600–750 °C) and Mn₄Si₇ (800–950 °C). The resulting process map provides the technological parameters for synthesizing CMOS-compatible Si–Mn structures.
Downloads
References
K.S. Daliev, Sh.B. Utamuradova, J.J. Khamdamov, M.B. Bekmuratov, O.N. Yusupov, Sh.B. Norkulov, and Kh.J. Matchonov, “Defect Formation in MIS Structures Based on Silicon with an Impurity of Ytterbium,” East Eur. J. Phys. (4), 301-304 (2024). https://doi.org/10.26565/2312-4334-2024-4-33
F.A. Ferri, et al. “Evidence of magnetic vortices formation in Mn based sub micrometre structures embedded in Si–Mn films,” J. Phys. D: Appl. Phys. 42, 105005 (2009). https://doi.org/10.1088/0022-3727/42/13/132002
K.P. Abdurakhmanov, Kh.S. Daliev, Sh.B. Utamuradova, and N.Kh. Ochilova, “On defect formation in silicon with impurities of manganese and zinc,” Applied Solar Energy (English translation of Geliotekhnika), 34(2), 73–75 (1998).
Sh.B. Utamuradova, A.V. Stanchik, and D.A. Rakhmanov, “X-ray structural investigations of n-Si irradiated with protons,” East Eur. J. Phys. (2), 201-205 (2023). https://doi.org/10.26565/2312-4334-2023-2-21
Kh.S. Daliev, Sh.B. Utamuradova, Z.E. Bahronkulov, A.Kh. Khaitbaev, J.J. Hamdamov, East Eur. J. Phys. (4), 193 (2023). https://doi.org/10.26565/2312-4334-2023-4-23
N. Dupin, B. Sundman, U.R. Kattner, et al. “Implementation of an effective bond energy formalism in the multicomponent CALPHAD approach,” Calphad, 43, 18–31 (2013). https://doi.org/10.6028/jres.123.020
Sh.B. Utamuradova, and D.A. Rakhmanov, “Effect of holmium impurity on the processes of radiation defect formation in n-Si,” Physics AUC, 32, 132-136 (2022). https://cis01.central.ucv.ro/pauc/vol/2022_32/15_PAUC_2022_132_136.pdf
Sh.B. Utamuradova, A.V. Stanchik, D.A. Rakhmanov, A.S. Doroshkevich, and K.M. Fayzullaev, “X-ray structural analysis of n-Si, irradiated with alpha particles,” New materials, compounds and applications, 6(3), 214 – 219 (2022).
K.P. Abdurakhmanov, Sh.B. Utamuradova, Kh.S. Daliev, S.G. Tadjy-Aglaeva, and R.M. Érgashev, “Defect-formation processes in silicon doped with manganese and germanium,” Semiconductors, 32(6), 606–607 (1998).
S. Utamuradova, S. Daliev, J. Khamdamov, K. Matchonov, M. Karimov, and K. Utemuratova, East Eur. J. Phys. (1), 276 (2025), https://doi.org/10.26565/2312-4334-2025-1-32
Z. Li, et al. “On Curie temperature of B20–MnSi films with MnSi₁.₇ admixture,” Scientific Reports, 12, 16388 (2022). https://doi.org/10.1038/s41598-022-20483-2
Kh.S. Daliev, Sh.B. Utamuradova, Sh.Kh. Daliev, J.J. Khamdamov, and Sh.B. Norkulov, “The effect of dysprosium atoms introduced during the growth phase on the formation of radiation defects in silicon crystals,” East Eur. J. Phys. (3), 343-347 (2025). https://doi.org/10.26565/2312-4334-2025-3-33
S. Shtrikman, et al. “Phase Equilibria in the Mn–Si System,” J. Less-Common Met. 20, 61–71 (1970).
Sh.B. Utamuradova, Kh.S. Daliev, E.K. Kalandarov, and Sh.Kh. Daliev, “Features of the behavior of lanthanum and hafnium atoms in silicon,” Technical Physics Letters, 32(6), 469–470 (2006). https://doi.org/10.1134/s1063785006060034
K.S. Daliev, Sh.B. Utamuradova, A. Khaitbaev, J.J. Khamdamov, Sh.B. Norkulov, and M.B. Bekmuratov, “Defective Structure of Silicon Doped with Dysprosium,” East Eur. J. Phys. (2), 283-287 (2024). https://doi.org/10.26565/2312-4334-2024-2-30
K.S. Daliev, Sh.B. Utamuradova, J.J. Khamdamov, Sh.B. Norkulov, and M.B. Bekmuratov, “Study of Defect Structure of Silicon Doped with Dysprosium Using X-Ray Phase Analysis and Raman Spectroscopy,” East Eur. J. Phys. (4), 311-321 (2024). https://doi.org/10.26565/2312-4334-2024-4-35
Kh.S. Daliev, Sh.B. Utamuradova, A.I. Khaitbaeva, J.J. Khamdamov, J.Sh. Zarifbaev, and B.Sh. Alikulov, “Defect Structure of Silicon Doped with Erbium,” East Eur. J. Phys. (2), 288 (2024). https://doi.org/10.26565/2312-4334-2024-2-31
Y. Ishikawa, et al. “Magnetic properties of MnSi with B20 structure,” Phys. Rev. B, 31, 5884 (1985). https://doi.org/10.1103/physrevb.31.5884
K.S. Daliev, Sh.B. Utamuradova, J.J. Khamdamov, M.B. Bekmuratov, Sh.B. Norkulov, and U.M. Yuldoshev, “Changes in the Structure and Properties of Silicon During Ytterbium Doping: The Results of o Comprehensive Analysis,” East Eur. J. Phys. (4), 240-249 (2024). https://doi.org/10.26565/2312-4334-2024-4-24
Ismaïla Kounta, et al. “Competitive actions of MnSi in the epitaxial growth of Mn5Si3 thin films on Si(111),” PHYSICAL REVIEW MATERIALS 7, 024416 (2023).
A.Y. Boboev, I.M. Soliev, N.Y. Yunusaliyev, M.M. Xotamov, East European Journal of Physics, (3), 408–412 (2025), https://doi.org/10.26565/2312-4334-2025-3-42
S. Sugahara, and M. Tanaka, “A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for spin injection and detection,” Appl. Phys. Lett. 84, 2307 (2004). https://doi.org/10.1063/1.1689403
B.D. Igamov, et al. “Electrophysical and Thermoelectric Properties And Crystal Structure Of The Formed Mn4Si7 Thin Vacuum Coating” Advanced Physical Research Vol.7, No.2, 2025, pp. 212-221 https://doi.org/10.62476/apr.72212
Kh.S. Daliev, Sh.B. Utamuradova, J.J. Khamdamov, Z.E. Bahronkulov, East Eur. J. Phys. 2, 304 (2024), https://doi.org/10.26565/2312-4334-2024-2-34
Sh.B. Utamuradova, A.V. Stanchik, K.M. Fayzullaev, and B.A. Bakirov, “Raman scattering of light by silicon single crystals doped with chromium atoms,” Applied Physics, (2), 33–38 (2022). https://doi.org/10.51368/1996-0948-2022-2-33-38
Sh.B. Utamuradova, D.A. Rakhmanov, A.S. Doroshkevich, et al. “Impedance spectroscopy of p-Si, p-Si irradiated with protons,” Advanced Physical Research, 5(1), 5–11 (2023).
M.K. Karimov, Kh.J. Matchоnov, K.U. Otaboeva, M.U. Otaboev, “Computer Simulation of Scattering Xe+ Ions from InP(001)❬110❭ Surface at Grazing Incidence”, e-J. Surf. Sci. Nanotechnol. 17, 179−183 (2019), https://doi.org/10.1380/ejssnt.2019.179
S.I. Novikov, et al. “Formation of manganese silicides in silicon films by high-temperature annealing,” Semiconductors, 54, 1105–1110 (2020).
Bruker Optik GmbH. SENTERRA II User Manual (2018).
ICDD PDF-4+ Database. International Centre for Diffraction Data (Release 2023).
Sh.B. Utamuradova, Kh.J. Matchonov, J.J. Khamdamov, and Kh.Y. Utemuratova, “X-ray diffraction study of the phase state of silicon single crystals doped with manganese,” New Materials, Compounds and Applications, 7(2), 93-99 (2023). http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/v7n2/Utamuradova_et_al.pdf
S.B. Utamuradova, S.K. Daliev, A.K. Khaitbaev, J.J. Khamdamov, Kh.J. Matchonov, and X.Y. Utemuratova, “Research of the Impact of Silicon Doping with Holmium on its Structure and Properties Using Raman Scattering Spectroscopy Methods,” East European Journal of Physics, (2), 274-278 (2024). https://doi.org/10.26565/2312-4334-2024-2-28
L.J. Zhang, Y. Du, H.H. Xu, et al. “Thermodynamic description of the Mn-Si-Zn system,” Sci. China Tech. Sci. 55, 475483 (2012). https://doi.org/10.1007/s11431-011-4676-6
A. Nicholas Grundy, Bengt Hallstedt, and Ludwig J. Gauckler, “Assessment of the Mn-O system,” Journal of Phase Equilibria, 24(1), 21–39 (2003). https://link.springer.com/article/10.1007/s11669-003-0004-6
Z. Li, et al. “On Curie temperature of B20-MnSi films” Scientific Reports, 12, 16388 (2022). https://doi.org/10.1038/s41598-022-20483-2
E. Anastassakis, A. Cantarero, and M. Cardona, “Lattice dynamics of silicon and germanium,” Phys. Rev. B, 41, 7529 (1990). https://doi.org/10.1103/PhysRevB.41.7529
D.E. Aspnes, et al. “Optical properties of amorphous silicon and silicon dioxide,” J. Appl. Phys. 60, 754 (1986). https://doi.org/10.1063/1.337713
Z. Li, et al. “B20–MnSi films grown on Si(100) substrates with magnetic skyrmion signature,” Materials Today Physics, 21, 100541 (2021). https://doi.org/10.1016/j.mtphys.2021.100541
F.A. Ferri, et al. “Evidence of magnetic vortices formation in Mn-based sub-micrometre structures embedded in Si–Mn films,” J. Phys. D: Appl. Phys. 42, 105005 (2009). https://doi.org/10.1088/0022-3727/42/10/105005
B.D. Igamov, et al. “Electrophysical and Thermoelectric Properties and Crystal Structure of the Formed Mn₄Si₇ Thin Vacuum Coating,” Advanced Physical Research, 7(2), 212–221 (2025). https://doi.org/10.14704/nq.2025.07.02.407
Y.-W. Kim, et al. “Formation of Mn-silicide thin films on Si substrate: structural and transport properties,” Thin Solid Films, 516, 7053–7058 (2008). https://doi.org/10.1016/j.tsf.2007.12.070
T. Goto, et al. “High-temperature thermoelectric properties of MnSi1.7 films prepared by reactive deposition epitaxy,” Journal of Alloys and Compounds, 509, 3076–3080 (2011). https://doi.org/10.1016/j.jallcom.2010.11.101
E. Smith, and G. Dent, Modern Raman Spectroscopy: A Practical Approach, (John Wiley & Sons, 2005).
A. Misra, and M.C. Bhatnagar, “Raman Imaging in Semiconductor Materials,” Materials Today: Proceedings, 49(5), 1751–1756 (2022). https://doi.org/10.1016/j.matpr.2021.09.313
Q. Ruan, et al. “Chemical Imaging of Silicon-Based Heterostructures Using Confocal Raman Microscopy,” J. Raman Spectrosc. 50(12), 1733–1740 (2019). https://doi.org/10.1002/jrs.5678
J.S. Lee, Y.T. Kim, and H.G. Kim, “Characterization of Mn–Si thin films and their application to thermoelectric devices,” Mater. Sci. Eng. B, 147(2), 103–108 (2008). https://doi.org/10.1016/j.mseb.2007.09.017
H. Flandorfer, “Binary manganese silicides,” J. Alloys Compd. 489(1), 57–60 (2010). https://doi.org/10.1016/j.jallcom.2009.09.103
S.M. Sze, and K.K. Ng, Physics of Semiconductor Devices, (Wiley-Interscience, 2006).
G. Ottaviani, and A. Modelli, “Formation of manganese silicides on Si(100): Structure and kinetics,” J. Appl. Phys. 70(7), 4029 4036 (1991). https://doi.org/10.1063/1.349637
A.B. Gordienko, et al., “Mn silicide phases formation by ion beam synthesis,” Phys. Status Solidi A, 203(14), 3452–3457 (2006). https://doi.org/10.1002/pssa.200622189
X. Zhang, and Y. Shiraki, “Silicide formation in Mn/Si systems studied by RHEED and AES,” Appl. Surf. Sci. 99(4), 345–352 (1996). https://doi.org/10.1016/0169-4332(96)00358-7
Y. Kurosaki, S. Yabuuchi, A. Nishide, N. Fukatani, and J. Hayakawa, “Thermoelectric Properties of Texture-controlled MnSi 1.7 -based Composite Thin Films,” Int. J. Metall. Mater. Eng. 3, 130 (2017). http://dx.doi.org/10.15344/2455-2372/2017/130
W. Jeitschko, “Silicides and germanides of manganese: phase equilibria and structures,” J. Solid State Chem. 6, 363–370 (1973). https://doi.org/10.1016/S0022-4596(73)80089-2
P. Franke, and D. Neuschütz, “Mn–Si (Manganese–Silicon),” in: Binary Systems. Part 4: Binary Systems from Mn–Ni to Y–Zr, (SpringerMaterials, 2006). https://materials.springer.com/isp/phase-diagram/docs/sm_0544667
Z. Li, et al. “On Curie temperature of B20 MnSi films with MnSi₁.₇ admixture,” Scientific Reports, 12, 16388 (2022). https://doi.org/10.1038/s41598-022-20483-2
D.E. Aspnes, et al. “Optical properties of amorphous silicon: Raman signatures of disorder,” J. Appl. Phys. 60, 754–767 (1986). https://doi.org/10.1063/1.337426
F.A. Ferri, et al. “Raman identification of Mn₄Si₇ in Si–Mn films: phase evolution under annealing,” J. Phys. D: Appl. Phys. 42, 105005 (2009). https://doi.org/10.1088/0022-3727/42/13/132002
A.Y. Boboev, N.Y. Yunusaliyev, Kh.A. Makhmudov, F.A. Abdulkhaev, G.G. Tojiboyev, M.O. G‘ofurjonova, “Surface Morphology and Roughness of Sulfur-Doped ZnO Thin Films: Analysis Based on Atomic Force Microscopy,” East European Journal of Physics, (3), 319–324 (2025), https://doi.org/10.26565/2312-4334-2025-3-30
E. Karhu, et al. “Structure and magnetic properties of MnSi epitaxial thin films,” Phys. Rev. B 82, 184417 (2010). https://doi.org/10.1103/PhysRevB.82.184417
F.A. Ferri, et al. “Evidence of magnetic vortices formation in Mn-based sub-micrometre structures embedded in Si–Mn films,” Journal of Physics D: Applied Physics, 42, 132002 (2009). https://doi.org/10.1088/0022-3727/42/13/132002
A.Y. Boboev, B.M. Ergashev, N.Y. Yunusaliyev, J.S. Madaminjonov, “Electrophysical Nature of Defects in Silicon Caused by Implanted Platinum Atoms,” East European Journal of Physics, (2), 431–435 (2025), https://doi.org/10.26565/2312-4334-2025-2-53
N. Saunders, and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, (Elsevier, 1998).
A.Y. Boboev, Kh.A. Makhmudov, N.Y. Yunusaliyeva, M.O. G‘ofurjonova, F.A. Abdulkhaev, G.G. Tojiboyeva, “Simulation of Radiation-Induced Structural and Optical Modifications in ZnO:S/SI Thin Film Structures,” East European Journal of Physics, (3), 382–387 (2025), https://doi.org/10.26565/2312-4334-2025-3-39
ICDD PDF-4+ Database, Card No. 01-072-0566 (MnSi, B20 structure).
ICDD PDF-4+ Database, Card No. 01-089-4880 (Mn₄Si₇, Tetragonal).
Copyright (c) 2025 Sh.B. Utamuradova, Sh.Kh. Daliev, J.J. Khamdamov, Kh.J. Matchonov, A.Kh. Khaitbaev

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



