Cosmological Diagnostics and Stability of Dark Energy Model in Non-Metric Gravity

  • Muhammad Sharif Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan; 4Research Center of Astrophysics and Cosmology, Khazar University, Baku, Azerbaijan https://orcid.org/0000-0001-6845-3506
  • Eman M. Moneer Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia https://orcid.org/0000-0002-1255-6335
  • Muhammad Zeeshan Gul Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan https://orcid.org/0000-0003-4202-867X
  • Muhammad Hassan Shahid Кафедра математики та статистики, Лахорський унiверситет, Лахор, Пакистан https://orcid.org/0009-0003-4102-9045
  • Euaggelos E. Zotos Department of Physics, School of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece https://orcid.org/0000-0002-1565-4467
Keywords: f(Q,C) gravity, Dark energy model, Stability analysis

Abstract

In this study, we investigate the dynamics of generalized ghost pilgrim dark energy in the background of f(Q,C) gravity, where Q is the non-metricity scalar and C represents the boundary term. To complete this objective, we take an isotropic and homogeneous universe with an ideal matter distribution. Our analysis includes a scenario with non-interacting fluids, encompassing both dark matter and dark energy. To understand the cosmic dynamics, we reconstruct a f(Q,C) model and examine its influence on the universe evolution. We explore key cosmological factors, i.e., state variable, the behavior of (ωD - ω'D)-plane and the statefinder diagnostic pair, which help to analyze the cosmic expansion. A crucial aspect of our analysis is the stability of generalized ghost pilgrim dark energy model via the squared sound speed method, confirming its viability in supporting the observed accelerated expansion. Our findings are consistent with observational data, demonstrating that f(Q,C) gravity provides a robust theoretical foundation for describing dark energy and the universe large-scale dynamics. This work not only deep our understanding of modified gravity and mysterious energy but also offers new insights into alternative explanation for cosmic acceleration beyond standard paradigms.

Downloads

Download data is not yet available.

References

M. Sharif, et al., Phys. Dark Universe, 47, 101760 (2025). https://doi.org/10.1016/j.dark.2024.101760

I. Hashim, et al., High Energy Density Phys. 57, 101223 (2025). https://doi.org/10.1016/j.hedp.2025.101223

F. Javed, et al., Ann. Phys. 482, 170189 (2025). https://doi.org/10.1016/j.aop.2025.170189

M. Adeel, et al., Mod. Phys. Lett. A, 40, 2450213 (2025). https://doi.org/10.1142/S0217732324502134

I. Hashim, et al., Int. J. Geom. Methods Mod. Phys. 22, 2540049 (2025). https://doi.org/10.1142/S0219887825400493

A. De, T.H. Loo, and E.N. Saridakis, J. Cosmol. Astropart. Phys. 03, 050 (2024). 10.1088/1475-7516/2024/03/050

A. Samaddar, et al., Nucl. Phys. B, 1006, 116643 (2024). https://doi.org/10.1016/j.nuclphysb.2024.116643

M. Sharif, et al., Phys. Dark Universe, 48, 101839 (2025). https://doi.org/10.1016/j.dark.2025.101839

M. Sharif, et al., High Energy Density Phys. 55, 101185 (2025). https://doi.org/10.1016/j.hedp.2025.101185

M. Sharif, et al., Phys. Lett. A, 555, 130773 (2025). https://doi.org/10.1016/j.physleta.2025.130773

D.C. Maurya, Mod. Phys. Lett. A, 39, 2450034 (2024). https://doi.org/10.1142/S0217732324500342

D.C. Maurya, Astron. Comput. 46, 100798 (2024). https://doi.org/10.1016/j.ascom.2024.100798

N. Myrzakulov, et al., Phys. Dark Universe, 47, 101790 (2024). https://doi.org/10.1016/j.dark.2024.101790

N. Myrzakulov, A. Pradhan, and S.H. Shekh, arXiv 2412.01164, (2024). https://doi.org/10.48550/arXiv.2412.01164

D.C. Maurya, Gravit. Cosmol. 30, 330 (2024). https://doi.org/10.1134/S0202289324700245

M. Usman, A. Jawad, and A.M. Sultan, Eur. Phys. J. C, 84, 868 (2024). https://doi.org/10.1140/epjc/s10052-024-13219-1

S.D. Sadatian, and S.M.R. Hosseini, Phys. Dark Universe, 47, 101737 (2024). https://doi.org/10.1016/j.dark.2024.101737

A. Samaddar, et al., Nucl. Phys. B, 1006, 116643 (2024). https://doi.org/10.1016/j.nuclphysb.2024.116643

H. Wei, Class. Quantum Grav. 29, 175008 (2012). https://doi.org/10.1088/0264-9381/29/17/175008L

E. Ebrahimi, and A. Sheykhi, Phys. Lett. B, 706, 19 (2011). https://doi.org/10.1016/j.physletb.2011.11.008

A. Sheykhi, and M.S. Movahed, Gen. Relativ. Gravit. 44, 449 (2012). https://doi.org/10.1007/s10714-011-1286-3

A. Jawad, Astrophys. Space Sci. 356, 119 (2015). https://doi.org/10.1007/s10509-014-2191-5

V. Fayaz, et al., Eur. Phys. J. Plus, 131, 22 (2016). https://doi.org/10.1140/epjp/i2016-16022-x

S.D. Odintsov, V.K. Oikonomou, and S. Banerjee, Nucl. Phys. B, 938, 935 (2019). https://doi.org/10.1016/j.nuclphysb.2018.07.013

N. Myrzakulov, et al., Front. Astron. Space Sci. 9, 902552 (2022). https://doi.org/10.3389/fspas.2022.902552

M. Sharif, M.Z. Gul, and I. Hashim, Phys. Dark Universe, 46, 101606 (2024). https://doi.org/10.1016/j.dark.2024.101606; Eur.

Phys. J. C, 84, 1094 (2024). https://doi.org/10.1140/epjc/s10052-024-13473-3; Chin. J. Phys. 89, 266 (2024). https://doi.org/10.

/j.cjph.2024.03.020

R.R. Caldwell, and E.V. Linder, Phys. Rev. Lett. 95, 141301 (2005). https://doi.org/10.1103/PhysRevLett.95.141301

V. Sahni, et al., J. Exp. Theor. Phys. Lett. 77, 201 (2003). https://doi.org/10.1134/1.1574831

P.A. Ade, et al., Astron. Astrophys. 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830

S. Chattopadhyay, Eur. Phys. J. Plus, 129, 82 (2014). https://doi.org/10.1140/epjp/i2014-14082-6

M. Zubair, and G. Abbas, Astrophys. Space Sci. 357, 154 (2015). https://doi.org/10.1007/s10509-015-2387-3

Published
2025-12-08
Cited
How to Cite
Sharif, M., Moneer, E. M., Gul, M. Z., Shahid, M. H., & Zotos, E. E. (2025). Cosmological Diagnostics and Stability of Dark Energy Model in Non-Metric Gravity. East European Journal of Physics, (4), 30-41. https://doi.org/10.26565/2312-4334-2025-4-03