Cosmological Diagnostics and Stability of Dark Energy Model in Non-Metric Gravity
Abstract
In this study, we investigate the dynamics of generalized ghost pilgrim dark energy in the background of f(Q,C) gravity, where Q is the non-metricity scalar and C represents the boundary term. To complete this objective, we take an isotropic and homogeneous universe with an ideal matter distribution. Our analysis includes a scenario with non-interacting fluids, encompassing both dark matter and dark energy. To understand the cosmic dynamics, we reconstruct a f(Q,C) model and examine its influence on the universe evolution. We explore key cosmological factors, i.e., state variable, the behavior of (ωD - ω'D)-plane and the statefinder diagnostic pair, which help to analyze the cosmic expansion. A crucial aspect of our analysis is the stability of generalized ghost pilgrim dark energy model via the squared sound speed method, confirming its viability in supporting the observed accelerated expansion. Our findings are consistent with observational data, demonstrating that f(Q,C) gravity provides a robust theoretical foundation for describing dark energy and the universe large-scale dynamics. This work not only deep our understanding of modified gravity and mysterious energy but also offers new insights into alternative explanation for cosmic acceleration beyond standard paradigms.
Downloads
References
M. Sharif, et al., Phys. Dark Universe, 47, 101760 (2025). https://doi.org/10.1016/j.dark.2024.101760
I. Hashim, et al., High Energy Density Phys. 57, 101223 (2025). https://doi.org/10.1016/j.hedp.2025.101223
F. Javed, et al., Ann. Phys. 482, 170189 (2025). https://doi.org/10.1016/j.aop.2025.170189
M. Adeel, et al., Mod. Phys. Lett. A, 40, 2450213 (2025). https://doi.org/10.1142/S0217732324502134
I. Hashim, et al., Int. J. Geom. Methods Mod. Phys. 22, 2540049 (2025). https://doi.org/10.1142/S0219887825400493
A. De, T.H. Loo, and E.N. Saridakis, J. Cosmol. Astropart. Phys. 03, 050 (2024). 10.1088/1475-7516/2024/03/050
A. Samaddar, et al., Nucl. Phys. B, 1006, 116643 (2024). https://doi.org/10.1016/j.nuclphysb.2024.116643
M. Sharif, et al., Phys. Dark Universe, 48, 101839 (2025). https://doi.org/10.1016/j.dark.2025.101839
M. Sharif, et al., High Energy Density Phys. 55, 101185 (2025). https://doi.org/10.1016/j.hedp.2025.101185
M. Sharif, et al., Phys. Lett. A, 555, 130773 (2025). https://doi.org/10.1016/j.physleta.2025.130773
D.C. Maurya, Mod. Phys. Lett. A, 39, 2450034 (2024). https://doi.org/10.1142/S0217732324500342
D.C. Maurya, Astron. Comput. 46, 100798 (2024). https://doi.org/10.1016/j.ascom.2024.100798
N. Myrzakulov, et al., Phys. Dark Universe, 47, 101790 (2024). https://doi.org/10.1016/j.dark.2024.101790
N. Myrzakulov, A. Pradhan, and S.H. Shekh, arXiv 2412.01164, (2024). https://doi.org/10.48550/arXiv.2412.01164
D.C. Maurya, Gravit. Cosmol. 30, 330 (2024). https://doi.org/10.1134/S0202289324700245
M. Usman, A. Jawad, and A.M. Sultan, Eur. Phys. J. C, 84, 868 (2024). https://doi.org/10.1140/epjc/s10052-024-13219-1
S.D. Sadatian, and S.M.R. Hosseini, Phys. Dark Universe, 47, 101737 (2024). https://doi.org/10.1016/j.dark.2024.101737
A. Samaddar, et al., Nucl. Phys. B, 1006, 116643 (2024). https://doi.org/10.1016/j.nuclphysb.2024.116643
H. Wei, Class. Quantum Grav. 29, 175008 (2012). https://doi.org/10.1088/0264-9381/29/17/175008L
E. Ebrahimi, and A. Sheykhi, Phys. Lett. B, 706, 19 (2011). https://doi.org/10.1016/j.physletb.2011.11.008
A. Sheykhi, and M.S. Movahed, Gen. Relativ. Gravit. 44, 449 (2012). https://doi.org/10.1007/s10714-011-1286-3
A. Jawad, Astrophys. Space Sci. 356, 119 (2015). https://doi.org/10.1007/s10509-014-2191-5
V. Fayaz, et al., Eur. Phys. J. Plus, 131, 22 (2016). https://doi.org/10.1140/epjp/i2016-16022-x
S.D. Odintsov, V.K. Oikonomou, and S. Banerjee, Nucl. Phys. B, 938, 935 (2019). https://doi.org/10.1016/j.nuclphysb.2018.07.013
N. Myrzakulov, et al., Front. Astron. Space Sci. 9, 902552 (2022). https://doi.org/10.3389/fspas.2022.902552
M. Sharif, M.Z. Gul, and I. Hashim, Phys. Dark Universe, 46, 101606 (2024). https://doi.org/10.1016/j.dark.2024.101606; Eur.
Phys. J. C, 84, 1094 (2024). https://doi.org/10.1140/epjc/s10052-024-13473-3; Chin. J. Phys. 89, 266 (2024). https://doi.org/10.
/j.cjph.2024.03.020
R.R. Caldwell, and E.V. Linder, Phys. Rev. Lett. 95, 141301 (2005). https://doi.org/10.1103/PhysRevLett.95.141301
V. Sahni, et al., J. Exp. Theor. Phys. Lett. 77, 201 (2003). https://doi.org/10.1134/1.1574831
P.A. Ade, et al., Astron. Astrophys. 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830
S. Chattopadhyay, Eur. Phys. J. Plus, 129, 82 (2014). https://doi.org/10.1140/epjp/i2014-14082-6
M. Zubair, and G. Abbas, Astrophys. Space Sci. 357, 154 (2015). https://doi.org/10.1007/s10509-015-2387-3
Copyright (c) 2025 Muhammad Sharif, Muhammad Gul

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



