Squeezed Coherent States in Supersymmetric Quantum Mechanics with Position-Dependent Mass

  • Daniel Sabi Takou Ecole Polytechnique d’Abomey Calavi (EPAC-UAC), Universit´e d’Abomey-Calavi (UAC), B´enin; Unit´e de Recherche en Physique Th´eorique (URPT), Institut de Math´ematiques et de Sciences Physiques (IMSP), Porto-Novo, Rep. du B´enin https://orcid.org/0009-0002-7603-8999
  • Amidou Boukari Unit´e de Recherche en Physique Th´eorique (URPT), Institut de Math´ematiques et de Sciences Physiques (IMSP), Porto-Novo, Rep. du B´enin https://orcid.org/0009-0001-6010-4763
  • Assimiou Yarou Mora Unit´e de Recherche en Physique Th´eorique (URPT), Institut de Math´ematiques et de Sciences Physiques (IMSP), Porto-Novo, Rep. du B´enin https://orcid.org/0009-0003-0097-8607
  • Gabriel Y. H. Avossevou Unit´e de Recherche en Physique Th´eorique (URPT), Institut de Math´ematiques et de Sciences Physiques (IMSP), Porto-Novo, Rep. du B´enin https://orcid.org/0000-0002-9609-0340
Keywords: Squeezed Coherent State, Supersymmetric, Quantum Mechanics, Position dependent mass.

Abstract

In this paper, we construct and analyze a class of squeezed coherent states within the framework of supersymmetric quantum mechanics (SUSYQM) involving a position-dependent mass (PDM). Using a deformed algebraic structure, we generalize the creation and annihilation operators to accommodate spatially varying mass profiles. The resulting states exhibit non-classical features, such as squeezing, coherence, and modified uncertainty relations, strongly influenced by both the deformation parameters and the mass function. We explore their physical properties through expectation values, variances, and probability densities. This work provides a pathway toward extending coherent state theory to more complex quantum systems with geometrical and algebraic richness.

Downloads

Download data is not yet available.

References

D.F. Walls, ”Squeezed states of light,” Nature, 306, 141–146 (1983) https://doi.org/10.1038/306141a0

R. Loudon, and P.L. Knight, ”Squeezed light,” J. Mod. Opt. 34, 709–759 (1987). https://doi.org/10.1080/09500348714550721

M.C. Teich, and B.E.A. Saleh, ”Squeezed state of light,” Quantum Opt. J. Eur. Opt. Soc. Part B, 1, 153 (1989). https://doi.org/10.1088/0954-8998/1/2/006

E. Schrodinger, “Der stetige ¨ubergang von der Mikrozur Makromechanik,” Die Naturwissenschaften, 14(28), 664-666 (1926). https://doi.org/10.1007/BF01507634

E.H. Kennard, “The Uncertainty Relation for Joint Measurement of Position and Momentum,” Physikalische Zeitschrift, 44(4-5), 326-352 (1927). https://doi.org/10.1007/BF01391200

J.R. Klauder, ”The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers,” Ann. Phys. 11, 123 (1960). https://doi.org/10.1016/0003-4916(60)90131-7

J.R. Klauder, and B.S. Skagerstam, Coherent States-Applications in Physics and Mathematical Physics, (World Scienti c, Singapore, 1985).

M.M. Nieto, ”The Discovery of Squeezed States - In 1927,” arXiv: quant-ph/9708012, (1985). https://doi.org/10.48550/arXiv.quant-ph/9708012

H. Vahlbruch, et al., ”Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007). https://doi.org/10.1088/1367-2630/9/10/371

R. Schnabel, et al., ”Quantum metrology for gravitational wave astronomy,” Nat. Commun. 1, 121 (2010). https://doi.org/10.1038/ncomms1122

P.M. Anisimov, et al., ”Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit,” Phys. Rev. Lett. 104, 103602 (2010). https://doi.org/10.1103/PhysRevLett.104.103602

J. Aasi, et al., ”Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics, 7, 613–619 (2013). https://doi.org/10.1038/nphoton.2013.177

G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, (Editions de Physique, Les Ulis, France, 1988).

A. Peter, ”The effect of position dependent effective mass of hydrogenic impurities in parabolic GaAs/GaAlAs quantum dots,” Int. J. Mod. Phys. B, 23, 5109 (2009). https://doi.org/10.1142/S0217979209053394

J. Dajka, and J. Luczka, Binary Communication with Gazeau–Klauder Coherent States, Entropy, 22, 201 (2020). https://doi.org/10.3390/e22020201

K. Ullah, and H. Ullah, ”Enhanced optomechanically induced transparency and slow/fast light in a position-dependent mass optomechanics,” Eur. Phys. J. D, 74, 197 (2020). https://doi.org/10.1140/epjd/e2020-10286-1

A.S. Pereira, A.S.Lemos, and F.A. Brito, ”Squeezed coherent states for a free particle with time-varying mass,” Eur. Phys. J. Plus, 138, 363 (2023). https://doi.org/10.48550/arXiv.2208.05588

E. Munguia-Gonzalez, J.K. Sheldon Rego, and F. Making, ”Squeezed-coherent states concrete by determining their wavefunction,” arXiv:2104.11350 [quant-ph]. https://doi.org/10.48550/arXiv.2104.11350

S. Dey, and A. Fring, ”Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations”, Phys. Rev. D, 86, 064038 (2012). https://doi.org/10.1103/PhysRevD.86.064038

M. Angelova, A. Hertz, and V. Hussin, ”Squeezed coherent states and the one-dimensional Morse quantum system,” J. Phys. A: Math. Theor. 45 244007 (2012). https://doi.org/10.48550/arXiv.1111.1974

N. Alvarez, and V. Hussin, ”Generalized Coherent and Squeezed States Based on the h(1) ⊕ su(2) Algebra,” J. Math. Phys. 43 2063-2085(2002). https://doi.org/10.48550/arXiv.math-ph/0503062

L. Lawson, ”Position-dependent mass in strong quantum gravitational background fields,” J. Phys. A: Math. Theor. 55, 105303 (2022). https://doi.org/10.1088/1751-8121/ac3787

L. Lawson, ”Minimal and maximal lengths of quantum gravity from non-hermitian position-dependent noncommutativity,” Scientific Reports 12, 20650 (2022). https://doi.org/10.1038/s41598-022-21098-3

L. Lawson, K. Amouzouvi, K. Sodoga, and K. Beltako, ”Position-dependent mass from noncommutativity and its statistical descriptions,” IJGMP, 21, 2450137 (2024). https://doi.org/10.1142/S0219887824501378

L. Lawson, and P. Osei, ”Gazeau-Klauder coherent states in position-deformed Heisenberg algebra,” Journal of Physics Communications, 6, 085016 (2022). https://doi.org/10.1088/2399-6528/ac8a8a

G.B. da Costa, A.C.G. da Silva, and S.G. Ignacio, ”Supersymmetric quantum mechanics and coherent states for a deformed oscillator with position-dependent effective mass,” J. Math. Phys. 62, 092101 (2021). https://doi.org/10.48550/arXiv.2106.08467

R. Costa Filho, M. Almeida, G. Farias, and J. Andrade, ”Displacement operator for quantum systems with position-dependent mass,” Phys. Rev. A, 84, 050102 (2011). https://doi.org/10.1103/PhysRevA.84.050102

S.H. Dong, R. Lemus, and A. Frank, ”Ladder operators for the Morse potential,” Int. J. Quant. Chem. 86, 433 (2002). https://doi.org/10.1002/qua.10038

S-H. Dong, Factorization Method in Quantum Mechanics, Fundamental theories in physics, 150, (Springer, Dortrecht, The Netherlands, 2008).

J. Gazeau, and J. Klauder, ”Coherent states for systems with discrete and continuous spectrum,” Phys. A: Math. Gen. 32, 123 (1999). https://doi.org/10.1088/0305-4470/32/1/013

J. Klauder, ”Continuous-Representation Theory. I. Postulates of Continuous-Representation Theory,” J. Math. Phys. 4, 1055 (1963). https://doi.org/10.1063/1.1704034

J. Klauder, ”Continuous-representation theory. II. Generalized relation between quantum and classical dynamics,” J. Math. Phys. 4, 1058 (1963). https://doi.org/10.1063/1.1704035

A. Perelomov, Generalized Coherent States and Their Application, 1st edition, (Springer-verlag, 1986). https://link.springer.com/book/10.1007/978-3-642-61629-7

S. Dey, and A. Fring, ”Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations,” Phys. Rev. D, 86, 064038 (2012). https://doi.org/10.1103/PhysRevD.86.064038

M. Angelova, A. Hertz, and V. Hussin, ”Squeezed coherent states and the one-dimensional Morse quantum system,” J. Phys. A: Math. Theor. 45, 244007 (2012). https://doi.org/10.1088/1751-8113/45/24/244007

S. Dey, and V. Hussin, ”Entangled squeezed states in noncommutative spaces with minimal length uncertainty relations,” Phys. Rev. D, 91, 124017 (2015). https://doi.org/10.1103/PhysRevD.91.124017

V. Roos, ”Position-dependent effective masses in semiconductor theory,” Phys. Rev. B, 27, 7547 (1983). https://doi.org/10.1103/PhysRevB.31.2294

D.S. Takou, A.Y. Mora, I. Nonkan´e, L.M. Lawson, and G.Y.H. Avossevou, ”Gazeau-Klauder coherent states for a harmonic position-dependent mass,” arXiv:2503.23043v2. https://doi.org/10.48550/arXiv.2503.23043

T. Gora, and F. Williams, ”Theory of Electronic States and Transport in Graded Mixed Semiconductors,” Phys. Rev. 177, 1179 (1969). https://doi.org/10.1103/PhysRev.177.1179

D.J. BenDaniel, and C.B. Duke, ”Space-Charge Effects on Electron Tunneling,” Phys.Rev. 152, 683 (1966). https://doi.org/10.1103/PhysRev.152.683

Q. Zhu, and H. Kroemer, ”Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors,” Phys. Rev. B, 27, 3519 (1983). https://doi.org/10.1103/PhysRevB.27.3519

T. Li, and J. Kuhn, ”Band-offset ratio dependence on the effective-mass Hamiltonian based on a modified profile of the GaAs-AlxGal1-xAs quantum well,” Phys. Rev. B, 47, 12760 (1993). https://doi.org/10.1103/PhysRevB.47.12760

O. Mustafa, and S.H. Mazharimousavi, ”Ordering Ambiguity Revisited via Position Dependent Mass Pseudo-Momentum Operators,” International Journal of Theoretical Physics, 46, 1786-1796 (2007). https://doi.org/10.1007/s10773-006-9311-0

K. Nouicer, ”Path integral for the harmonic oscillator in one dimension with nonzero minimum position uncertainty,” Phys. Lett. A. 354, 399 (2006). https://doi.org/10.1016/j.physleta.2006.02.001

P. Roy, ”Quantum statistical properties of Gazeau–Klaudercoherent state of the anharmonic oscillator,” Optics Communications, 221, 145–152 (2003). https://doi.org/10.1016/S0030-4018(03)01470-6

I.S. Gradshteyn, and I. M. Ryzhik, Table of Integrals, Series and Products, (Acedemic Press); M. Abramowitz, and I. A. Stegun, “Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Table,” (Dover).

J.A. Bergou, M. Hillery, and D. Yu, ”Minimum uncertainty states for amplitude-squared squeezing: Hermite polynomial states,” Phys. Rev. A, 43, 515-520 (1991). https://doi.org/10.1103/physreva.43.515

G. Breitenbach, S. Schiller, and J. Mlynek, ”Measurement of the quantum states of squeezed light,” Nature, 387, 471 (1997). https://doi.org/10.1038/387471a0

H-C. Fu, and R. Sasaki, ”Hypergeometric states and their nonclassical properties,” Phys. Rev. A, 53, 3836-3844 (1996). https://doi.org/10.1063/1.531965

Published
2025-12-08
Cited
How to Cite
Sabi Takou, D., Boukari, A., Mora, A. Y., & Avossevou, G. Y. H. (2025). Squeezed Coherent States in Supersymmetric Quantum Mechanics with Position-Dependent Mass. East European Journal of Physics, (4), 63-74. https://doi.org/10.26565/2312-4334-2025-4-06