Numerical Investigation of Lead-Free Perovskite Solar Cells Based on FASnI₃/ZrS₂ Structure Using SCAPS-1D Simulator

Keywords: FASnI₃, ZrS₂, SCAPS-1D, Lead-free perovskite solar cells, Electron transport layer, Photovoltaic modeling, Solar energy

Abstract

This study presents a numerical investigation and optimization of lead-free perovskite solar cells using SCAPS-1D simulation. The proposed device is composed of formamidinium tin iodide (FASnI3, absorptive layer), zirconium disulfide (ZrS2, electron transport material), gold (Au, the back contact), and Fluorine-doped tin oxide (SnO2:F, the front contact).The effects of varying the thickness, defect density, doping concentration, operating temperature, and back-contact work function on the photovoltaic performance were studied to determine the optimal device architecture with the highest power conversion efficiency (PCE). Results reveal that the initial performance of FASnI₃/ZrS₂ solar cells was as follows: open-circuit voltage (VOC) =0.99V, short-circuit current (JSC) = 20.7mA/cm2, Fill factor (FF) = 60.13%, and power conversion efficiency (PCE)=12.4%.After optimization, the performance of FASnI₃/ZrS₂ significantly improved, achieving a PCE of 23.3%, FF of 82.4%, and JSC of 30.2mA/cm².This remarkable improvement in these parameters is attributed to the increase in thickness and doping density of the FASnI₃ and ZrS₂ layers which lead to improved light absorption and charge generation. Additionally, the 5.3 eV work-function of the back contact was found to create a better energy level alignment with the FASnI₃ layer, which facilitates charge extraction. These findings offer valuable insights into the design of efficient, stable, and lead-free perovskite solar cells.

Downloads

Download data is not yet available.

Author Biography

Hmoud Al Dmour, Mutah University, Faculty of Science, Department of Physics, Jordan

Professor in Physics

References

J. Zhang, Geosci. Front. 15(5), 101873 (2024). https://doi.org/10.1016/j.gsf.2024.101873

M.S. Reza, A. Ghosh, N. Drissi, H. Al-Dmour, R.K. Prodhan, M.M. Islam, S. Begum, et al., RSC Adv. 14, 36675 (2024). https://doi.org/10.1039/D4R07912D

A.S. Abdulkarim, M. Srivastava, T. Ngulezhu, D. Singh, K. Strzałkowski, R.C. Singh, M.Z.A. Yahya, et al., Curr. Appl. Phys. 71, 190 (2025). https://doi.org/10.1016/j.cap.2024.12.025

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131(17), 6050 (2009). https://doi.org/10.1021/ja809598r

M. Tarekuzzaman, N. Shahadat, M. Montasir, O. Alsalmi, M.H. Mia, H. Al-Dmour, M. Rasheduzzaman, and M.Z. Hasan, RSC Adv. 15, 13643 (2025). https://doi.org/10.1039/D5RA01748C

K. Sekar, L. Marasamy, S. Mayarambakam, H. Hawashin, M. Nour, and J. Bouclé, RSC Adv. 13, 25483 (2023). https://doi.org/10.1039/D3RA04617D

A. Yadegarifard, H. Lee, H.-J. Seok, I. Kim, B.-K. Ju, H.-K. Kim, and D.-K. Lee, Nano Energy, 112, 108481 (2023). https://doi.org/10.1016/j.nanoen.2023.108481

A. Rehman, S. Afzal, I. Naeem, D. Bibi, S.G. Sarwar, F. Nabeel, and R.M. Obodo, Hybrid Adv. 7(2), 100301 (2024). https://doi.org/10.1016/j.hybadv.2024.100301

S.A.A. Jafri, R.S. Almufarij, A. Ashfaq, R.S. Alqurashi, L.G. Alharbe, A.R. Abd-Elwahed, O.A. Albeydani, et al., Sol. Energy, 270, 112391 (2024). https://doi.org/10.1016/j.solener.2023.112391

H. Al-Dmour, East Eur. J. Phys. (2), 445 (2024). https://doi.org/10.26565/2312-4334-2024-2-58

M. Abdelfatah, A. El-Sayed, W. Isamil, V. Sittinger, and A. El-Shaer, Sci. Rep. 13, 4553 (2023). https://doi.org/10.1038/s41598- 023-31553-4

M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films, 361-362, 527 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

B. Zaidi, N. Mekhaznia, M.S. Ullah, and H. Al-Dmour, J. Phys.: Conf. Ser. 2843, 012012 (2024). https://doi.org/10.1088/1742-6596/2843/1/012012

A. Das, S.D. Peu, M.A.M. Akanda, M.M. Salah, M.S. Hossain, and B.K. Das, Energies, 16, 2328 (2023). https://doi.org/10.3390/en16052328

A. Rehman, S. Afzal, I. Naeem, D. Bibi, S.G. Sarwar, F. Nabeel, and R.M. Obodo, Hybrid Adv. 7, 100301 (2024). https://doi.org/10.1016/j.hybadv.2024.100

O.J. Sandberg, A. Sundqvist, M. Nyman, and R. Österbacka, Phys. Rev. Appl. 5, 044005 (2016). https://doi.org/10.1103/PhysRevApplied.5.044005

H. Al-Dmour, and D.M. Taylor, J. Ovonic Res. 19(5), 587 (2023). https://doi.org/10.15251/JOR.2023.195.587

L. Zhao, J. Schmidt, and A. Cuevas, Appl. Phys. Lett. 101, 123904 (2012). https://doi.org/10.1063/1.4754609

H. Karmaker, A. Siddique, B.K. Das, and M.N. Islam, Results Eng. 22, 102106 (2024). https://doi.org/10.1016/j.rineng.2024.102106

G.G. Njema, B.C. Mosonik, C.C. Ahia, and J.K. Kibet, Chem. Eur. J. 30(71), e202403192 (2024). https://doi.org/10.1002/chem.202403192

H. Al-Dmour, AIMS Mater. Sci. 8(2), 261 (2021). https://doi.org/10.3934/matersci.2021017

S. Wu, C. Li, S.Y. Lien, and P. Gao, Chemistry, 6, 207 (2024). https://doi.org/10.3390/chemistry6010010

D.W. Husainat, P. Ali, J. Cofie, J. Attia, A. Fuller, and A. Darwish, AJOP, 8(1), 6 (2020). https://doi.org/10.11648/j.ajop.20200801.12

T. Rahman, A.A. Mansur, M.S.H. Lipu, et al., Energies, 16(9), 3706 (2023). https://doi.org/10.3390/en16093706

G.G. Njema, J.K. Kibet, S.M. Ngari, Measurement: Energy, 2, 100005 (2024). https://doi.org/10.1016/j.meaene.2024.100005

M.A. Madanat, A.A. Al-Tabbakh, M. Alsa'eed, H. Al-Dmour, and M.S. Mousa, Ultramicroscopy, 234, 113479 (2022). https://doi.org/10.1016/j.ultramic.2022.11347

A. Kumar, N.P. Singh, A. Sundaramoorthy, Mater. Lett. X, 12, 100092 (2021). https://doi.org/10.1016/j.mlblux.2021.100092

Published
2025-12-08
Cited
How to Cite
Al Dmour, H. (2025). Numerical Investigation of Lead-Free Perovskite Solar Cells Based on FASnI₃/ZrS₂ Structure Using SCAPS-1D Simulator. East European Journal of Physics, (4), 284-290. https://doi.org/10.26565/2312-4334-2025-4-26