Growth of BaZrS3 Chalcogenide Perovskite Thin Films Without Post Annealing

  • T.M. Razykov Physical-Technical Institute, Tashkent, Uzbekistan; Institute of Semiconductors Physics and Microelectronics, Tashkent, Uzbekistan https://orcid.org/0000-0001-9738-3308
  • K.M. Kuchkarov Physical-Technical Institute, Tashkent, Uzbekistan; Institute of Semiconductors Physics and Microelectronics, Tashkent, Uzbekistan https://orcid.org/0000-0002-2238-7205
  • R.T. Yuldoshov Physical-Technical Institute, Tashkent , Uzbekistan; Institute of Semiconductors Physics and Microelectronics, Tashkent, Uzbekistan https://orcid.org/0000-0002-7886-1607
  • M.P. Pirimmatov Physical-Technical Institute, Tashkent, Uzbekistan https://orcid.org/0009-0000-4829-7817
  • R.R. Khurramov Physical-Technical Institute, Tashkent, Uzbekistan https://orcid.org/0009-0008-1038-0138
  • D.Z. Isakov Physical-Technical Institute, Tashkent, Uzbekistan https://orcid.org/0000-0003-4314-5683
  • M.A. Makhmudov Physical-Technical Institute, Tashkent, Uzbekistan; Institute of Semiconductors Physics and Microelectronics, Tashkent, Uzbekistan
  • S.A. Muzafarova Institute of Semiconductors Physics and Microelectronics, Tashkent, Uzbekistan https://orcid.org/0000-0001-5491-7699
  • A. Matmuratov Physical-Technical Institute, Tashkent, Uzbekistan https://orcid.org/0009-0005-6121-6424
Keywords: BaZrS₃, Chalcogenide perovskites, Energy-dispersive X-ray spectroscopy, Optical bandgap, Photo-response

Abstract

Tandem solar cells based on hybrid organic–inorganic metal halide perovskites have achieved power conversion efficiencies of up to 28%. However, issues related to long-term stability and lead (Pb) toxicity have prompted the search for earth-abundant, chemically stable, and non-toxic alternatives. In this work, we report the first vacuum evaporation synthesis of BaZrS₃ (barium zirconium sulfide) thin films at a substrate temperature of 550 °C. The resulting films exhibit near-stoichiometric Ba:Zr ratios and strong light absorption, with absorption coefficients exceeding 10⁵ cm⁻¹ near 1.9 eV. Under controlled conditions, a baseline oxygen content of 4–6% was consistently observed. The absence of an additional sulfurization step markedly increased the resistance of the thin film and suppressed the dark current by approximately three orders of magnitude, indicating a substantial reduction in carrier density likely resulting from a decreased concentration of sulfur vacancies. These findings highlight the potential of BaZrS3 as a stable, lead-free absorber for next-generation photovoltaics.

Downloads

Download data is not yet available.

References

D.W. de Quilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon, M.E. Ziffer, H.J. Snaith, and D.S. Ginger, “Impact of microstructure on local carrier lifetime in perovskite solar cells,” Science, 348, 683-686 (2015). https://doi.org/10.1126/science.aaa5333

S. Suragtkhuu, S. Sunderiya, P. Myagmarsereejid, S. Purevdorj, A.S.R. Bati, B. Bold, et al., “Graphene-Like Monoelemental 2D Materials for Perovskite Solar Cells,” Adv. Energy Mater. 13, 2204074 (2023). https://doi.org/10.1002/aenm.202204074

A. Swarnkar, W.J. Mir, R. Chakraborty, M. Jagadeeswararao, T. Sheikh, A. Nag, “Are Chalcogenide Perovskites an Emerging Class of Semiconductors for Optoelectronic Properties and Solar Cell?” Chem. Mater. 31, 565−575 (2019). https://doi.org/10.1021/acs.chemmater.8b04178

K.V. Sopiha, C. Comparotto, J.A. Márquez, and J.J.S. Scragg, “Chalcogenide Perovskites: Tantalizing Prospects, Challenging Materials,” Advanced Optical Materials, 10, 2101704 (2022). https://doi.org/10.1002/adom.202101704

M. Buffiere, D.S. Dhawale, and F. El-Mellouhi, “Chalcogenide Materials and Derivatives for Photovoltaic Applications,” Energy Technology, 7, 1900819 (2019). https://doi.org/10.1002/ente.201900819

C. Comparotto, P. Ström, O. Donzel-Gargand, T. Kubart, and J.J.S. Scragg, “Synthesis of BaZrS3 Perovskite Thin Films at a Moderate Temperature on Conductive Substrates,” ACS Appl. Energy Mater. 5(5), 6335–6343 (2022). https://doi.org/10.1021/acsaem.2c00704

C. Wang, R. Nie, Y. Dai, H. Tai, B. Zhu, L. Zhao, Y. Wu, et al., “Enhancing the inherent stability of perovskite solar cells through chalcogenide-halide combinations,” Energy Environ. Sci. 17, 1368-1386 (2024). https://doi.org/10.1039/D3EE03612J

R. Jaramillo, and J. Ravichandran, “In praise and in search of highly- polarizable semiconductors: Technological promise and discovery strategiesm,” APL Materials, 7, 100902 (2019). https://doi.org/10.1063/1.5124795

Y. Nishigaki, T. Nagai, M. Nishiwaki, T. Aizawa, M. Kozawa, K. Hanzawa, Y. Kato, et al., “Extraordinary Strong Band-Edge Absorption in Distorted Chalcogenide Perovskites,” Solar RRL, 4, 1900555 (2020). https://doi.org/10.1002/solr.201900555

X. Wu, W. Gao, J. Chai, C. Ming, M. Chen, H. Zeng, P. Zhang, et al., “Defect tolerance in chalcogenide perovskite photovoltaic material BaZrS3,” Science China Materials, 64, 2976−2986 (2021). https://doi.org/10.1007/s40843-021-1683-0

W. Meng, B. Saparov, F. Hong, J. Wang, D.B. Mitzi, and Y. Yan, “Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application,” Chem. Mater. 28, 821 829 (2016). https://doi.org/10.1021/acs.chemmater.5b04213

M. Ishii, and M. Saeki, “Raman and Infrared Spectra of BaTiS3 and BaNbS3,” Phys. Stat. Sol. (b), 170, K49 (1992). https://doi.org/10.1002/pssb.2221700149

M. Ishii, M. Saeki, and M. Sekita, “Vibrational spectra of barium-zirconium sulfides,” Mater. Res. Bull. 28, 493-500 (1993). https://doi.org/10.1016/0025-5408(93)90132-W

S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, et al., “Chalcogenide perovskites – an emerging class of ionic semiconductors,” Nano Energy, 22, 129-135 (2016). https://doi.org/10.1016/j.nanoen.2016.02.020

R. Yang, J. Nelson, C. Fai, H.A. Yetkin, C. Werner, M. Tervil, A.D. Jess, et al., “A Low-Temperature Growth Mechanism for Chalcogenide Perovskites,” Chemistry of Materials, 35(12), 4743–4750 (2023). https://doi.org/10.1021/acs.chemmater.3c00494

T.M. Razykov, K.М. Kuchkarov, B.A. Ergashev, L. Schmidt-Mende, T. Mayer, M. Tivanov, М. Makhmudov, et al., “Growth and characterization of Sb2(SxSe1-x)3 thin flms prepared by chemical-molecular beam deposition for solar cell applications,” Thin Solid Films, 807, 140554 (2024). https://doi.org/10.1016/j.tsf.2024.140554

S. Agarwal, K.C. Vincent, and R. Agrawal, “From synthesis to application: a review of BaZrS3chalcogenide perovskites,” Nanoscale, 17, 4250-4300 (2025). https://doi.org/10.1039/D4NR03880K

Published
2025-09-08
Cited
How to Cite
Razykov, T., Kuchkarov, K., Yuldoshov, R., Pirimmatov, M., Khurramov, R., Isakov, D., Makhmudov, M., Muzafarova, S., & Matmuratov, A. (2025). Growth of BaZrS3 Chalcogenide Perovskite Thin Films Without Post Annealing. East European Journal of Physics, (3), 413-417. https://doi.org/10.26565/2312-4334-2025-3-43