Impact of Ruthenium Diffusion on the Electrical Properties of Thick Film Resistors

  • Avazbek T. Dekhkonov National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan https://orcid.org/0009-0000-8507-2617
  • Gulmurza Abdurakhmanov National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan https://orcid.org/0000-0002-0656-1859
  • Mukhriddin E. Tursunov National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan https://orcid.org/0009-0005-6356-7252
  • Shokhzod M. Norbekov Tashkent Institute of Management and Economics, Tashkent, Uzbekistan; Almalyk Branch of Tashkent State Technical University, Almalyk, Tashkent Region, Uzbekistan https://orcid.org/0000-0001-8204-6923
  • Dilnoza G. Tashmukhamedova Tashkent State Technical University named after Islom Karimov, Tashkent, Uzbekistan https://orcid.org/0000-0001-5813-7518
  • Gulbakhor Vokhidova Alfakom Non-state Training Center, Tashkent, Uzbekistan
  • Dibya Prakash Rai Department of Physics, Mizoram University, Aizawl, India https://orcid.org/0000-0002-3803-8923
  • Ummat A. Asrorov National Pedagogical University of Uzbekistan named after Nizami, Tashkent, Uzbekistan; National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan https://orcid.org/0009-0009-6800-7392
Keywords: Beveled sample, Diffusion layer, Diffusion coefficient, Resistance distribution, Diffusion profile

Abstract

The diffusion profile of the RuO2 into silicate glass and the electrical resistance distribution across diffusion layer have been studied by beveled sample method and energy dispersion spectroscopy. The distribution of content of Ru atoms in the diffusion layer is described by the erfc(x) what means that the diffusion coefficient is independent of the content of Ru atoms. The correlation of the distribution of Ru atom content and the resistance distribution in the diffusion layer showed that it is the diffusion doping of glass that is responsible for the conductivity of thick-film resistors. Thickness of the diffusion layer is more than 100 μm while average distance between RuO2 particles is about 0.5-2 μm. It means that all volume of the thick-film resistor comes conductive in firing process at 850°C in 10 minutes.

Downloads

Download data is not yet available.

References

R.W. Vest, “Conduction mechanisms in the thick film microcircuits,” in: Final Technical Report, (Purdue university, US, 1975). https://apps.dtic.mil/sti/pdfs/ADA024825.pdf

G.E. Pike, and C.H. Seager, “Electrical properties and conduction mechanisms of Ru-based thick-film (cermet) resistors,” J. Appl. Phys. 48(12), 5152 (1977). https://doi.org/10.1063/1.323595

D.P.H. Smith, and J.C. Anderson, “Electron conduction in thick film resistors,” Thin Solid Films. 71, 79-89 (1980). https://doi.org/10.1016/0040-6090(80)90186-8

A. Kubovy, “Model of electric conductivity of thick-film resistors. Part III. Temperature Dependence of Sheet Resistivity,” Ceramics – Silikaty, 39(1), l-40 (l995). https://www2.irsm.cas.cz/materialy/cs_content/1995/Kubovy_CS_1995_0000.pdf

F. Forlani, and M. Prudenziati, “Electrical Conduction by Percolation in Thick-Film Resistors,” Electrocomponent Science and Technology, 3, 77-83 (1976). http://dx.doi.org/10.1155/APEC.3.77

B. Morten, M. Prudenziati, M. Sacchi, and F. Sirotti, “Phase transitions in Ru based thick-film (cermet) resistors,” J. Appl. Phys. 83, 2267 (1988). https://doi.org/10.1063/1.341119

C. Grimaldi, T. Maeder, P. Ryser, and S. Strässler, “A model of transport nonuniversality in thick-film resistors,” Appl. Phys. Lett. 83, 189–191 (2003). https://doi.org/10.1063/1.1590733

R. Pflieger, M. Malki, Y. Guari, J. Larionova, and A. Grandjean, “Electrical Conductivity of RuO2–Borosilicate Glasses: Effect of the Synthesis Route,” J. American Ceramic Society, 92(7), 1560-1566 (2009). https://doi.org/10.1111/j.1551-2916.2009.03088.x

R.M. Hill, “Electrical transport in thick film resistors,” Electrocomp. Sci. Technology 6, 141-145 (1980). http://dx.doi.org/10.1155/APEC.6.141

KSRC. Murthy, “Evolution of conduction mechanism in thick film resistors,” Int. J. Adv. Res. 7(4), 238-256 (2019). https://doi.org/10.21474/IJAR01/8811

M. Prudenziati, and J. Hormadaly, editors, Printed Films – Materials science and applications in sensors, electronics and photonics, (Woodhead Publishing, Cambridge, 2012).

K. Flachbart, V. Pavlík, N. Tomašovičová, C.J. Adkins, M. Somora, J. Leib, and G. Eska, “Conduction Mechanism in RuO2-Based Thick Films,” Phys. Stat. Sol. (b), 205, 399-404 (1998). https://doi.org/10.1002/(SICI)1521-3951(199801)205:1<399::AID-PSSB399>3.0.CO;2-X

K. Bobran, A. Kusy, A. Stadler, and G. Wilczyński, “Conduction in RuO2-based thick films,” Int. J. Electronics, 78 (1), 113 119 (1995). https://doi.org/10.1080/00207219508926143

A. Kusy, A.W. Stadler, K. Mleczko, D. Zak, S. Pawlowski, P. Szałański1, Z. Zawiślak, et al., “Metal-insulator transition in nanocomposites of glass and RuO2,” Ann. Phys. (Leipzig), 8(5), 507–510 (1999). https://kpe.prz.edu.pl/fcp/HGBUKOQtTKlQhbx08SlkTUgZCUWRuHQwFDBoIVURNWH9UFVZpCFghUHcKVigEQUw/120/public/publikacje_naukowe/akusy_etal_ann_phys.pdf

J.M. Himelick, “Conduction mechanisms in thick film resistors,” PhD Thesis, Purdue University, Purdue, 1980), https://docs.lib.purdue.edu/dissertations/AAI8027287/

G. Abdurakhmanov, and N. Abdurakhmanova, “High Temperature Anomalies in Resistivity and Thermoelectric Power of Thick Film Resistors,” Phys. Stat. Sol. (a), 202(9), 1799-1802 (2005). https://doi.org/10.1002/pssa.200420036

G. Abdurakhmanov, “On the Conduction Mechanism of Silicate Glass Doped by Oxide Compounds of Ruthenium (Thick Film Resistors). 3. The minimum of temperature dependence of resistivity,” WJCMP. 4(3), 166-178 (2014). http://dx.doi.org/10.4236/wjcmp.2014.43021

G. Abdurakhmanov, “Peculiarities of the structure and transport properties of alkaline-free lead-silicate glasses doped by metal oxides.” D.Sc. thesis, National University of Uzbekistan, Tashkent, Uzbekistan, 2014. https://www.researchgate.net/publication/320465308_Peculiarities_of_the_Structure_and_Transport_Properties_of_Alkaline-Free_Lead-Silicate_Glasses_Doped_by_Metal_Oxides

W.A. Bachmann, and P.A. Hale, USA patent no. US005347226A, “Array spreading resistance probe (ASRP) method for profile extraction from semiconductor chips of cellular construction,” (16 November, 1992). https://patents.google.com/patent/US5347226A/en

ASTM F 525 – 00a Standard Test Method for Measuring Resistivity of Silicon Wafers Using a Spreading Resistance Probe https://store.astm.org/f0525-00a.html

P. Palanisamy, D.H.R. Sarma, and R.W. Vest, “Solubility of Ruthenium Dioxide in Lead Borosilicate Glasses,” J. American Ceramic Society, 72(9), 1755-1756 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06321.x

A. Prabhu, G.L. Fuller, and R.W. Vest, “Solubility of RuO2 in a Pb Borosilicate Glass,” J. American Ceramic Society, 57(9), 408-409 (1974). https://doi.org/10.1111/j.1151-2916.1974.tb11425.x

G. Abdurakhmanov, “On the Conduction Mechanism of Silicate Glass Doped by Oxide Compounds of Ruthenium (Thick Film Resistors). 1. Diffusion and percolation levels,” WJCMP, 1, 19-23 (2011). http://dx.doi.org/10.4236/wjcmp.2011.12004

K. Flachbart, V. Pavlk, N. Tomašovičová, C.J. Adkins, M. Somora, J. Leib, and G. Eska, “Conduction Mechanism in RuO2-Based Thick Films, Physica Status Solidi (B), 205(1), 399-404 (1998). https://doi.org/10.1002/(SICI)1521-3951(199801)205:1<399::AID-PSSB399>3.0.CO;2-X

A. Borisov, and K. Nachtweyh, “Ru solubility in silicate melts: experimental results in oxidizing region,” Lunar and Planetary Science XXIX. www.lpi.usra.edu/meetings/LPSC98/pdf/1320.pdf

U. Backman, M. Lipponen, R. Zilliacus, A. Auvinen, and J. Jokiniemi, “Ruthenium behaviour in severe nuclear accident conditions - progress report,” (2004). http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/36/031/36031958.pdf

V. Laurenz, R.O.C. Fonseca, C. Ballhaus, K.P. Jochum, A. Heuser, and P.J. Sylvester, “The solubility of palladium and ruthenium in picritic melts: 2. The effect of sulfur,” Geochimica et Cosmochimica Acta, 108, 172–183 (2013). http://dx.doi.org/10.1016/j.gca.2013.01.013

H. Mehrer, Diffusion in Solids, Ch. 30. (Springer-Verlag, Berlin, Heidelberg, 2007). http://doi.org:10.1007/978-3-540-71488-0

U.A. Asrorov. Polyacrylamide’s rheological and physicochemical properties: analysis and applications, East European Journal of Physics, 4. 413-418, 2024, ISSN 2312-4334 https://doi.org/10.26565/2312-4334-2024-4-48.

G. Abdurakhmanov, “Electrical conduction in doped silicate glass (thick film resistors),” in: New Insights into Physical Sciences, vol. 4, (Book Publishers International, London-Hooghly, 2020), pp. 47-71. https://doi.org/10.9734/bpi/nips/v4

M. Totokawa, S. Yamashita, K. Morikawa, Y. Mitsuoka, T. Tani, and H. Makino, “Microanalyses on the RuO2 Particle–Glass Matrix Interface in Thick-Film Resistors with Piezoresistive Effects,” International J. Appl. Ceramic Technology, 6(2), 195-204 (2009). https://doi.org/10.1111/j.1744-7402.2008.02325.x

M. Totokawa, T. Tani, M. Yoshimura, S. Yamashita, K. Morikawa, Y. Mitsuoka, and T. Nonaka, “Chemical and Piezoresistive Microanalyses at the Interface of RuO2-Glass Diffusion Pairs,” J. American Ceramic Society, 93, 481-487 (2010). http://dx.doi.org/10.1111/j.1551-2916.2009.03403.x

M. Totokawa, T. Tani, H. Azuma, A. Takeichi, and R. Asahi, “Transport and Piezoresistive Characteristics of Ruthenium-Doped Bismuth–Borosilicate Glass Thin Films Grown by Pulsed Laser Deposition,” J. Am. Ceram. Soc. 93(10), 3312–3318 (2010). https://doi.org/10.1111/j.1551-2916.2010.03844.x

O. Abe, and Y. Taketa, “Electrical conduction in thick film resistors,” J. Phys. D: Appl. Phys. 24(7), 1163-1171 (1991). http://dx.doi.org/10.1088/0022-3727/24/7/022

O. Abe, Y. Taketa, and M. Haradome, “Microstructure and Electrical Conduction in RuO2 Thick-Film Resistors,” Electrical Engineering in Japan, 110(1), 21-30 (1990). https://doi.org/10.1541/ieejfms1972.109.111

C. Ferrero, “Proposed theoretical models for thick film transport mechanisms: example of thick film strain gauges on enamelled steels,” 2022. pp. 51. https://www.researchgate.net/publication/358042608

F. Johnson, G.M. Crosbie, and W.T. Donlon, “The effect of processing conditions on resistivity and microstructure of ruthenate-based thick film resistors,” J. Mater. Sci. Materials in Electron. 8, 29-37 (1997). http://dx.doi.org/10.1023/A:1018596719229

S. Vionnet-Menot, PhD Thesis, “Low firing temperature thick-film piezoresistive composites – properties and conduction mechanism,” Lausanne, EPFL, 2005. https://infoscience.epfl.ch/bitstreams/db5e401d-b3bd-4284-b8c2-9ca034855b10/download

S. Vionnet-Menot, C. Grimaldi, T. Maeder, S. Strässler, and P. Ryser, “Tunneling-percolation origin of nonuniversality: theory and experiments,” Phys. Rev. B, 71, 064201 (2005). https://doi.org/10.1103/PhysRevB.71.064201

A.N. Lopanov, N.S. Lozinskyy, and Ya. A. Moroz, “Chemical processes accompanying the formation of modified ruthenium resistors and their functional properties,” Russian Chemical Bulletin, International Edition, 69(9), 1724-1730 (2020). https://link.springer.com/article/10.1007/s11172-020-2955-8

M, Wen, X, Guan, H, Li, and J. Ou, “Temperature characteristics of thick-film resistors and its applications a strain sensor with low temperature-sensitivity,” Sensors and Actuators A, 301, 111779 (2020). https://doi.org/10.1016/j.sna.2019.111779

Published
2025-09-08
Cited
How to Cite
Dekhkonov, A. T., Abdurakhmanov, G., Tursunov, M. E., Norbekov, S. M., Tashmukhamedova, D. G., Vokhidova, G., Rai, D. P., & Asrorov, U. A. (2025). Impact of Ruthenium Diffusion on the Electrical Properties of Thick Film Resistors. East European Journal of Physics, (3), 375-381. https://doi.org/10.26565/2312-4334-2025-3-38