DFT-Based Study of TlX and BX (X= N, P, As) Compounds: A Comparative Insight into Structural, Electronic, and Optical Behavior

  • Abed Zoulikha Applied Materials Laboratory, Research Center, Sidi Bel Abbes University, Algeria https://orcid.org/0009-0007-4824-1099
  • Lachebi Abdelhadi Sidi Bel Abbes University, 22000, Algeria
  • Abdelali Laid Applied Materials Laboratory, Research Center, Sidi Bel Abbes University, Algeria https://orcid.org/0009-0009-9173-3835
Keywords: Thallium compounds, Boron compounds, First-principles calculations, Density functional theory (DFT), Electronic properties, Band structure, Semiconductors, TlX, BX

Abstract

This work presents a detailed theoretical investigation of the structural, electronic, and optical properties of thallium-based (TlX) and boron-based (BX) compounds, where X = N, P, As, within the zinc-blende crystal structure. First-principles calculations were performed using density functional theory (DFT) within the generalized gradient approximation (GGA). The obtained results reveal that Tl-based compounds exhibit lower total energies compared to BX compounds, indicating higher structural stability. In terms of electronic behavior, BX compounds maintain their semiconducting nature. In contrast, TlX compounds show metallic or near-metallic characteristics due to the absence of an energy gap at the Fermi level. Furthermore, optical investigations demonstrate that TlX compounds possess higher static refractive indices and stronger absorption features in the low-energy region. These findings highlight the potential of Tl-based compounds for future applications in optoelectronic and photonic devices. Overall, this comparative study provides valuable insights for the design of advanced materials for electronic and energy-related technologies.

Downloads

Download data is not yet available.

References

A.M, Satawara, G.A. Shaikh, S.K. Gupta, and P.N. Gajjar, “Structural, electronic and optical properties of hexagonal boron-nitride (h-BN) monolayer: An Ab-initio study,” Material Today: Proceedings, 47(10), 529-532 (2020). https://doi.org/10.1016/j.matpr.2020.10.589

D. Allali, B. Abdelmajid, S.E. Saber, D. Bahri, F. Zerarga, R. Amari, M. Radjai, et al. “Afirst-principles investigation on the structural, electronic and optical characteristics of tetragonal compounds XAgO (X = Li, Na, K, Rb),” Computational Condensed Matter. 38, e00876 (2024). https://doi.org/10.1016/j.cocom.2023.e00876

N. Saidi-Houat, A. Zaoui, and M. Ferhat, “Structural Stability of Thallium–V Compounds,” Journal of Physics: Condensed Matter, 19(10), 106221 (2007). https://doi.org/10.1088/0953-8984/19/10/106221

C. Ambrosch-Draxi, and J.O. Sofo, “Linear optical properties of solids within the full- potential linearized augmented plane wave method,” Computer Physics Communications, 175, 1-14 (2006). https://doi.org/10.1016/j.cpc.2006.03.005

J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

Y. Megdoud, Y. Benkrima, L. Tairi, R. Meneceur, S. Ghemid, and H. Meradji, Functional materials, 31(2), 232-251 (2024). https://doi.org/10.15407/fm31.02.232

F.D. Murnaghan, “The compressibility of media under extreme pressures,” Proceedings of the national Academy of Sciences, 30(9), 244-247 (1944). https://doi.org/10.1073/pnas.30.9.244

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties, (J. Techniche Universtät Wien,Wien. Austria, 2001).

Alleg Abdelakader, Benamara Ahmed, Moulay Noureddine, Berrahal Mokhtar, Zoukel Abdelhalim; Mansour Omar, Bensaid Djillali, Azzaz Yahia, Y. Al-Douri, Solid State Communications 380, 115435 (2024). https://doi.org/10.1016/j.ssc.2024.115435

H.J. Monkhorst, and J.D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, 13, 5188-5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

H. Allaf, M. Radjai, D. Allali, A. Bouhemadou, S.S. Essaoud, S.B. Omran, R. Khenata, and Y. Al-Douri, “Ab initio predictions of pressure-dependent structural, elastic, and thermodynamic properties of CaLiX3 (X = Cl, Br, and I) halide perovskites,” Computational Condensed Matter, 37, E00850 (2023). https://doi.org/10.1016/j.cocom.2023.e00850

D. Allali, R. Amari, A. Bouhemadou, A. Boukhari, B. Deghfel, S.S. Essaoud, S. Bin-Omran, et al. “Ab initio investigation of structural, elastic, and thermodynamic characteristics of tetragonal XAgO compounds (X = Li, Na, K, Rb),” Physica Scripta, 98, 115905 (2023). https://doi.org/10.1088/1402-4896/acfbfe

J.I. Al-Hawarin, A.-A. Abu-Yamin, Abd Al-Aziz A. Abu-Saleh, I.A.M. Saraireh, M.H. Almatarneh, M. Hasan, O.M. Atrooz, et al. “Synthesis, Characterization, and DFT Calculations of a New Sulfamethoxazole Schiff Base and Its Metal Complexes,” Materials, 16(14), 5160 (2023). https://doi.org/10.1088/1402-4896/acfbf

R. Samia, A. Yahia, B. Ahmed, B. Mokhtar, M. Noureddine, L. Mohamed, B. Djillali, et al. “Electronic, elastic and piezoelectric properties calculations of perovskites materials type BiXO3(X = Al, Sc): DFT and DFPT investigations,” Chemical Physics, 573, 111998 (2023). https://doi.org/10.1016/j.chemphys.2023.111998

M. Farzan, S.M. Elahi, H. Salehi, and M.R. Abolhassani, “A Comparison of the~Structural, Electronic, Optical and Elastic Properties of Wurtzite, Zinc-Blende and Rock Salt TlN: A DFTStudy,” Acta Phys. Pol. A, 130(3), 758–768 (2016). https://doi.org/10.12693/APhysPolA.130.758

A. El Hassasna, and A. Bechiri, “Electronic and Elastic Properties of TlX (X = N, P, As and Sb) in Zinc-Blende Structure,” Solid State Phenom. 297, 82–94 (2019). https://doi.org/10.4028/www.scientific.net/SSP.297.82

K. Bencherif, A. Yakoubi, and H. Mebtouche, “Structural and Electronic Properties of the BN, BP and BAs in the Different Phases of Zinc-Blende, NaCl and CsCl,” Acta Phys. Pol. A, 131(1), 209–212 (2017). https://doi.org/10.12693/aphyspola.131.209

R.M. Wentzcovitch, M.L. Cohen, and P.K. Lam, “Theoretical study of BN, BP, and BAs at high pressures,” Phys. Rev. B, 36(11), 6058 (1987). https://doi.org/10.1103/PhysRevB.36.6058

M. Van Shilfgaarde, A.-B. Chen, S.S.A. Krishnamurthy and A. Sher, “InTlP – a proposed infrared detector material,” Appl. Phys. Lett. 65, 2714–2716 (1994). https://doi.org/10.1063/1.112567

N. Saidi-Houat, A. Zaoui, and M. Ferhat, “Ab initio study of the fundamental properties of novel III-V nitride Alloys Ga1-xTlxN,” Materials Science and Engineering B, 162, 26-31 (2009). https://doi.org/10.1016/j.mseb.2009.01.031

H.M. Mazouz, A. Belabbes, A. Zaoui, and M. Ferhat, “First-principles study of lattice dynamics in thallium-V compounds,” Superlatices and Microstructures, 48, 560-5568 (2010). https://dx.doi.org/10.1016/j.spmi.2010.09.012

B.B. Bouiadjra, N. Mehnane, and N. Oukli, “First principles calculation of structural, electronic and optical properties of (001) and (110) growth axis (InN)/(GaN)n superlattices,” Revista Mexicana de Fisica, 67(1), 7-17 (2021). https://doi.org/10.31349/RevMexFis.67.7

R. Riane, Z. Boussahla, S.F. Matar, and A. Zaoui, “Structural and Electronic Properties of Zinc Blende-type Nitrides BxAl1–xN,” Z. Naturforsch. 63(9), 1069-1076 (2008). https://doi.org/10.1515/znb-2008-0909

S. Adachi, Properties of Group IV, III–V and II–VI Semiconductors, (John Wiley & Sons, 2005). https://doi.org/10.1002/0470090340

A. Said, M. Debbichi, and M. Said, “Theoretical study of electronic and optical properties of BN, GaN and BxGa1−xN in zinc blende and wurtzite structures,” Optik, 127(20), 9212–9221 (2016). https://doi.org/10.1016/j.ijleo.2016.06.103

H. Meradji, S. Drablia, S. Ghemid, H. Belkhir, B. Bouhafs, and A. Tadjer, “First‐principles elastic constants and electronic structure of BP, BAs, and BSb,” Phys. Status Solidi B, 241(13), 2881–2885 (2004). https://doi.org/10.1002/pssb.200302064

P. Rodriguez-Hernandez, M. Gonzalez-Diaz, and A. Munoz, Phys. Rev. B, 51, 14705 (1995). https://doi.org/10.1103/physrevb.51.14705

A. Zaoui, M. Ferhat, B. Khelifa, J.P. Dufour, and H. Aourag, “Correlation between the Ionicity Character and the Charge Density in Semiconductors,” Phys. Stat. Sol. (b), 185, 163-169 (1994). https://doi.org/10.1002/pssb.2221850112

H. Belghoul, M. Oukli, F. Moulay, K. Ghlam, and H. Abid, “First-principles calculations to investigate structural, electronic and optical properties of BN by inserting an ultrathin XY(X = B, Al and Y= Bi, P, N) layer to form short-period (XY)1/(BN)1 superlattice,” Optoelectronics and Advanced Materials,” 18(7-8), 363-382 (2024).

S.E. Gulebaglan, E.K. Dogan, M. Aycibin, M.N. Secuk, B. Erdinc, and H. Akkus. “Structural and electronic properties of zincblende phase of TlxGa1−xAsyP1−y quaternary alloys: First-principles study,” Cent. Eur. J. Phys. 11(12), 1680-1685 (2013). https://doi.org/10.2478/s11534-013-0314-1

S.Q. Wang. H.Q. Ye, “,” Phys. Rev. B, 66, 235111 (2002). https://doi.org/10.1103/PhysRevB.66.235111

Y. Al-Douri, B. Merabet, H. Abid, and R. Khenata, “First-principles calculations to investigate optical properties of ByAlxIn1−x−yN alloys for optoelectronic devices,” Superlattice and Microstructures, 51, 404-411 (2012). https://doi.org/10.1016/j.spmi.2012.01.004

S. Alnujaim, A. Bouhemadou, M. Chegaar, A. Guechi, S. Bin-Omran, R. Khenata, Y. Al-douri, W. Yang. and H. Lu, “Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites,” The European Physical Journal B, 95, 114 (2022). https://doi.org/10.1140/epjb/s10051-022-00381-2

M. Merabet, S. Benalia, L. Djoudi, O. Cheref, N. Bettahar, D. Rached, R. Belacel, Chinese Journal of Physics 60, 462 (2019). https://doi.org/10.1016/j.cjph.2019.05.026.

C. Ambrosch-Draxl, and J.O. Sofo, “Linear optical properties of solids within the full-potential linearized augmented planewave method,” Computer Physics Communications, 175, 1-14 (2006). https://doi.org/10.1016/j.cpc.2006.03.005

D.P. Rai, Sandeep, A. Shankar, A.P. Sakhya, T.P. Sinba, P. Grima-Gallardo, H. Cabrera, R. Khenata, et al. “Electronic, optical and thermoelectric properties of bulk and surface (001) CuInTe2: A first principles study,” Journal of Alloys and Compounds, 699, 1003-1011 (2017). https://doi.org/10.1016/j.jallcom.2016.12.443

A. El Hassasna, and A. Bechiri, “Electronic and Elastic Properties of TlX (X= N, P, As and Sb) in zinc-Blende Structure,” Solid State Phenomena, 297, 82-94 (2019). https://doi.org/10.4028/www.scientific.net/SSP.297.82

S. Ding, H. Zhang, R. Dou, W. Liu, D. Sun, and Q. Zhang, “Theoretical and Experimental studies of electronic, optical and luminescent properties for Tl-based garnet materials,” J. Solid State Chem. 263, 123-130 (2018). https://doi.org/10.1016/J.JSSC.2018.04.028

B. Song, et al. “Optical Properties of cubic boron arsenide,” Applied Physics Letters, 116, 141903 (2020). https://doi.org/10.1063/5.0004666

X. Huang, Q. Cao, M. Wan, and H.-Z. Song, “Electronic and optical properties of BP, InSe mono layer and BP/InSe Heterojunction with promising photo electronic performance,” Materials, 15, 6214 (2022). https://doi.org/10.3390/ma15186214

M.M. Nobahari, “Electro-optical properties of strained mono layer boron phosphide,” Scientific-Reports, 13, 9849 (2023). https://doi.org/10.1038/s41598-023-37099-9

E. da Silva Barboz, A.A. Dias, L. Graco, S.S. Carara, D. Da Costa, and T.A.S. Pereira. “Electronic, excitonic, and optical properties of zinc blende boron arsenide tuned by hydrostatic pressure,” ACS Omega, 9, 47710-47718 (2024). https://doi.org/10.1021/ACSOMEGA.4C07598

C. Zhang, S. Mahadevan; J. Yuan, J.K. Wai, H.Y. Gao, W. Liu, H. Zhong, et al. “Unraveling Urbach Tail Effects in High-Performance Organic Photovoltaics: Dynamic vs Static Disorder,” ACS Energy Lett. 7(6), 1971-1979 (2022). https://doi.org/10.1021/acsenergylett.2c00816

A. Lamichhane, “Energy–Gap–Refractive Index Relations in Semiconductors—Using Wemple–DiDomenico Model to Unify Moss, Ravindra, and Herve–Vandamme Relationships,” Solids, 4(4), 316–326 (2023). https://doi.org/10.3390/solids4040020

L. Artús. M. Feneberg, C. Attaccalite, J.H. Edgar, J. Li, R. Goldhahn, and R. Cuscó, “Ellipsometry Study of Hexagonal Boron Nitride Using Synchrotron Radiation: Transparency Window in the Far-UVC,” Adv. Photonics Res. 2(4), 2000101 (2021). https://doi.org/10.1002/adpr.202000101

A. Zaoui, and F. El Haj Hassan, “Full potential linearized augmented plane wave calculations of structural and electronic properties of BN, BP, BAs and BSb,” J. Phys. Condens. Matter, 13, 253 (2001). https://doi.org/10.1088/0953-8984/13/2/303

Published
2025-12-08
Cited
How to Cite
Zoulikha, A., Abdelhadi, L., & Laid, A. (2025). DFT-Based Study of TlX and BX (X= N, P, As) Compounds: A Comparative Insight into Structural, Electronic, and Optical Behavior. East European Journal of Physics, (4), 469-483. https://doi.org/10.26565/2312-4334-2025-4-48