Dielectric Constants and Transverse Effective Charges in the Quinary Alloy GaxIn1-xNySbzAs1-y-z Lattice Matched to InAs, GaSb and GaAs
Abstract
This study provides a comprehensive theoretical analysis of the dielectric properties and transverse effective charges of the pentanary alloy GaxIn1-xNySbzAs1-y-z, focusing on compositions that are lattice-matched to InAs, GaSb, and GaAs substrates. The investigation employs the local empirical pseudopotential method (EPM) in conjunction with the virtual crystal approximation (VCA) and the Harrison bond-orbital model to evaluate key parameters, including the static and high-frequency dielectric constants, ionicity, polarity, and transverse effective charge. These computational approaches were chosen due to their ability to accurately describe electronic interactions in complex alloy systems while maintaining computational efficiency. The obtained results demonstrate notable consistency with experimental data available for the constituent binary compounds, reinforcing the reliability of the theoretical framework. Additionally, the study reveals systematic trends in the dielectric behavior as a function of composition, providing insights into the role of atomic substitution in tuning these properties. To the best of our knowledge, this work represents the first detailed theoretical assessment of GaxIn1-xNySbzAs1-y-z alloys in this context. While experimental validation remains necessary, our findings establish a valuable theoretical benchmark for future studies and potential applications in optoelectronic and semiconductor device engineering, particularly in the design of advanced infrared detectors and high-frequency electronic components.
Downloads
References
G. Li, et al. J. Mater. Chem. C, 12, 12150 (2024). https://doi.org/10.1039/D4TC02615B
S. Nakamura, J. Vac. Sci. Technol. A, 13, 705 (1995). https://doi.org/10.1116/1.579811
I. Vurgaftman, J.R.M. Meyer, and J.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001). http://dx.doi.org/10.1063/1.1368156
K. Iga, and S. Kinoshita, Process Technology for Semiconductor Lasers, (Springer, Berlin, 1996).
A.R. Kovsh, et al. Proc. of SPIE, 5349, (2004). https://doi.org/10.1117/12.531245
B. Merabet, A. Lachebi, and H. Abid, Turk. J. Phys, 35(1), 13 (2011). https://doi.org/10.3906/fiz-0907-21
H. Aourag, B. Bouhafs, and M. Certier, Phys. Stat. Sol (b), 201, 117(1997). https://doi.org/10.1002/1521-3951(199705)201:1%3C117::AID-PSSB117%3E3.0.CO;2-8
K. Kassali, and N. Bouarissa, Microelectron. Eng, 54, 277 (2000). https://doi.org/10.1016/S0167-9317(00)00409-3
H. Abid, N. Badi, M. Driz, N. Bouarissa, K. H. Benkabou, B. Khelifa, and H. Aourag, Microelectron. Eng B, 33 133 (1995).
C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski, W. Walukiewicz, W. Shan, et al. J. Appl. Phys, 76, 2409 (2000). https://doi.org/10.1063/1.126360
H.P. Xin, K.L. Kavanagh, M. Kondow, and C.W. Tu, J. Cryst. Growth, 201/202, 419 (1999). https://doi.org/10.1016/S0022-0248(98)01366-9
N. Bouarissa, H. Baaziz, Z. Charifi, Phys. Status Solidi, B: Basic Res, 231 403 (2002). https://doi.org/10.1002/1521-3951(200206)231:2%3C403::AID-PSSB403%3E3.0.CO;2-6
L. Vegard, Z. Phys. 5, 17 (1921).
T. Kobayasi, H. Nara, Bull. Coll. Med. Sci. Tohoku Univ, 2, 7 (1993).
H. Baaziz, Z. Charifi, and N. Bouarissa, Mater. Lett. 60, 39 (2006). https://doi.org/10.1016/j.matlet.2005.07.067
H. Mathieu, Physique des semiconducteurs et des composants électroniques, 5e éd., (Dunod, 2004).
D.E. Aspnes, C.G. Olson, and D.W. Lynch, Phys. Rev. Lett, 37, 766 (1976). https://doi.org/10.1103/PhysRevLett.37.766
S. Adachi, J. Appl. Phys. 61, 4869 (1987). https://doi.org/10.1063/1.338352
S. Zollner, M. Garriga, J. Humlicek, S. Gopalan, and M. Cardona, Phys. Rev B, 43 4349 (1991). https://doi.org/10.1103/PhysRevB.43.4349
C. Alibert, A. Joullie, A.M. Joullie, and C. Ance, Phys. Rev. B, 27 4946 (1983). https://doi.org/10.1103/PhysRevB.27.4946
W.W. Walukiewicz, Physica E, 20 300 (2004). https://doi.org/10.1016/j.physe.2003.08.023
P.J.L. Herve, and L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994). https://doi.org/10.1016/1350-4495(94)90026-4
G.A. Samara, Phys. Rev. B, 27, 3494 (1983). https://doi.org/10.1103/PhysRevB.27.3494
S.Yu. Davydov, and S.K. Tikhonov, Semiconductors, 32, 947 (1998). https://doi.org/10.1134/1.1187520
P. Vogl, J. Phys. C: Solid State Phys, 11, 251 (1978). https://doi.org/10.1088/0022-3719/11/2/011
H. Baaziz, Z. Charifi, and N. Bouarissa, Mater. Chem. Phys. 68, 197 (2001). https://doi.org/10.1016/S0254-0584(00)00352-7
M. Levinshtein, S. Rumyantsev, and M. Shur, editors, Handbook Series on Semiconductor Parameters, vol. 2, (World Scientific, Singapore, 1999).
P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B, 43, 7231 (1991). https://doi.org/10.1103/PhysRevB.43.7231
V. Bougrov, M.E. Levinshtein, S.L. Rumyantsev, and A. Zubrilov, Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, edited by M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, (Wiley, New York, 2001), pp. 1–30.
A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini, Phys. Rev. B, 64, 045208 (2001). https://doi.org/10.1103/PhysRevB.64.045208
T.L. Tansley, in: Properties of Group III Nitrides, edited by J.H. Edgar, (INSPEC, London, 1994).
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



