Dielectric Constants and Transverse Effective Charges in the Quinary Alloy GaxIn1-xNySbzAs1-y-z Lattice Matched to InAs, GaSb and GaAs

  • H. Zerroukhi Applied Materials Laboratory, Research Center, sidi Bel Abbes University, Algeria
  • H. Abid Applied Materials Laboratory, Research Center, sidi Bel Abbes University, Algeria https://orcid.org/0000-0001-9647-7425
  • Hakim Baaziz Department of Physics, Faculty of Science, University of M’sila, M’sila, Algeria; Laboratory of physics and chemistry of materials, University of M’sila, Algeria https://orcid.org/0000-0003-4860-2740
  • T. Ghellab Department of Physics, Faculty of Science, University of M’sila, M’sila, Algeria; Laboratory of physics and chemistry of materials, University of M’sila, Algeria https://orcid.org/0009-0001-6823-4335
  • Z. Charifi Department of Physics, Faculty of Science, University of M’sila, M’sila, Algeria; Laboratory of physics and chemistry of materials, University of M’sila, Algeria https://orcid.org/0000-0003-3875-4716
Keywords: EPM, Polarity, Dielectric constants, Transverse effective charge, Lattice matched alloys, Pentanary

Abstract

This study provides a comprehensive theoretical analysis of the dielectric properties and transverse effective charges of the pentanary alloy GaxIn1-xNySbzAs1-y-z, focusing on compositions that are lattice-matched to InAs, GaSb, and GaAs substrates. The investigation employs the local empirical pseudopotential method (EPM) in conjunction with the virtual crystal approximation (VCA) and the Harrison bond-orbital model to evaluate key parameters, including the static and high-frequency dielectric constants, ionicity, polarity, and transverse effective charge. These computational approaches were chosen due to their ability to accurately describe electronic interactions in complex alloy systems while maintaining computational efficiency. The obtained results demonstrate notable consistency with experimental data available for the constituent binary compounds, reinforcing the reliability of the theoretical framework. Additionally, the study reveals systematic trends in the dielectric behavior as a function of composition, providing insights into the role of atomic substitution in tuning these properties. To the best of our knowledge, this work represents the first detailed theoretical assessment of GaxIn1-xNySbzAs1-y-z alloys in this context. While experimental validation remains necessary, our findings establish a valuable theoretical benchmark for future studies and potential applications in optoelectronic and semiconductor device engineering, particularly in the design of advanced infrared detectors and high-frequency electronic components. 

Downloads

Download data is not yet available.

References

G. Li, et al. J. Mater. Chem. C, 12, 12150 (2024). https://doi.org/10.1039/D4TC02615B

S. Nakamura, J. Vac. Sci. Technol. A, 13, 705 (1995). https://doi.org/10.1116/1.579811

I. Vurgaftman, J.R.M. Meyer, and J.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001). http://dx.doi.org/10.1063/1.1368156

K. Iga, and S. Kinoshita, Process Technology for Semiconductor Lasers, (Springer, Berlin, 1996).

A.R. Kovsh, et al. Proc. of SPIE, 5349, (2004). https://doi.org/10.1117/12.531245

B. Merabet, A. Lachebi, and H. Abid, Turk. J. Phys, 35(1), 13 (2011). https://doi.org/10.3906/fiz-0907-21

H. Aourag, B. Bouhafs, and M. Certier, Phys. Stat. Sol (b), 201, 117(1997). https://doi.org/10.1002/1521-3951(199705)201:1%3C117::AID-PSSB117%3E3.0.CO;2-8

K. Kassali, and N. Bouarissa, Microelectron. Eng, 54, 277 (2000). https://doi.org/10.1016/S0167-9317(00)00409-3

H. Abid, N. Badi, M. Driz, N. Bouarissa, K. H. Benkabou, B. Khelifa, and H. Aourag, Microelectron. Eng B, 33 133 (1995).

C. Skierbiszewski, P. Perlin, P. Wisniewski, W. Knap, T. Suski, W. Walukiewicz, W. Shan, et al. J. Appl. Phys, 76, 2409 (2000). https://doi.org/10.1063/1.126360

H.P. Xin, K.L. Kavanagh, M. Kondow, and C.W. Tu, J. Cryst. Growth, 201/202, 419 (1999). https://doi.org/10.1016/S0022-0248(98)01366-9

N. Bouarissa, H. Baaziz, Z. Charifi, Phys. Status Solidi, B: Basic Res, 231 403 (2002). https://doi.org/10.1002/1521-3951(200206)231:2%3C403::AID-PSSB403%3E3.0.CO;2-6

L. Vegard, Z. Phys. 5, 17 (1921).

T. Kobayasi, H. Nara, Bull. Coll. Med. Sci. Tohoku Univ, 2, 7 (1993).

H. Baaziz, Z. Charifi, and N. Bouarissa, Mater. Lett. 60, 39 (2006). https://doi.org/10.1016/j.matlet.2005.07.067

H. Mathieu, Physique des semiconducteurs et des composants électroniques, 5e éd., (Dunod, 2004).

D.E. Aspnes, C.G. Olson, and D.W. Lynch, Phys. Rev. Lett, 37, 766 (1976). https://doi.org/10.1103/PhysRevLett.37.766

S. Adachi, J. Appl. Phys. 61, 4869 (1987). https://doi.org/10.1063/1.338352

S. Zollner, M. Garriga, J. Humlicek, S. Gopalan, and M. Cardona, Phys. Rev B, 43 4349 (1991). https://doi.org/10.1103/PhysRevB.43.4349

C. Alibert, A. Joullie, A.M. Joullie, and C. Ance, Phys. Rev. B, 27 4946 (1983). https://doi.org/10.1103/PhysRevB.27.4946

W.W. Walukiewicz, Physica E, 20 300 (2004). https://doi.org/10.1016/j.physe.2003.08.023

P.J.L. Herve, and L.K.J. Vandamme, Infrared Phys. Technol. 35, 609 (1994). https://doi.org/10.1016/1350-4495(94)90026-4

G.A. Samara, Phys. Rev. B, 27, 3494 (1983). https://doi.org/10.1103/PhysRevB.27.3494

S.Yu. Davydov, and S.K. Tikhonov, Semiconductors, 32, 947 (1998). https://doi.org/10.1134/1.1187520

P. Vogl, J. Phys. C: Solid State Phys, 11, 251 (1978). https://doi.org/10.1088/0022-3719/11/2/011

H. Baaziz, Z. Charifi, and N. Bouarissa, Mater. Chem. Phys. 68, 197 (2001). https://doi.org/10.1016/S0254-0584(00)00352-7

M. Levinshtein, S. Rumyantsev, and M. Shur, editors, Handbook Series on Semiconductor Parameters, vol. 2, (World Scientific, Singapore, 1999).

P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B, 43, 7231 (1991). https://doi.org/10.1103/PhysRevB.43.7231

V. Bougrov, M.E. Levinshtein, S.L. Rumyantsev, and A. Zubrilov, Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, edited by M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, (Wiley, New York, 2001), pp. 1–30.

A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini, Phys. Rev. B, 64, 045208 (2001). https://doi.org/10.1103/PhysRevB.64.045208

T.L. Tansley, in: Properties of Group III Nitrides, edited by J.H. Edgar, (INSPEC, London, 1994).

Published
2025-12-08
Cited
How to Cite
Zerroukhi, H., Abid, H., Baaziz, H., Ghellab, T., & Charifi, Z. (2025). Dielectric Constants and Transverse Effective Charges in the Quinary Alloy GaxIn1-xNySbzAs1-y-z Lattice Matched to InAs, GaSb and GaAs. East European Journal of Physics, (4), 517-526. https://doi.org/10.26565/2312-4334-2025-4-53