Wave Propagation in Anisotropic Magnetically Quantized Ion Plasma with Trapped Electron and Positron
Abstract
This study examines the effects of magnetically quantized degenerate trapped electrons and positrons on small-amplitude ion acoustic shock waves (IAShWs) in a pair ion plasma using the Zakharov-Kuznetsov Burger (ZKB) equation. It focuses on how factors like magnetic quantization, degenerate temperature, normalized negative ions, electrons, positrons, anisotropic pressure, and other relevant physical parameters from an astrophysical plasma environment influence the propagation of IAShWs, particularly in the nonlinear regime. This research explores that there exist two distinct wave propagation modes—subsonic and supersonic which shows few distinct characteristics in different physical plasma environment of astrophysical origin. The results could aid in understanding the nonlinear dynamics and wave propagation characteristics in superdense plasmas found in white dwarfs and neutron stars, where the effects of trapped electrons and positrons, as well as ionic pressure anisotropy, are significant which is yet to be explored in detail.
Downloads
References
A.A. Mamun, and P.K. Shukla, “Solitary waves in an ultrarelativistic degenerate dense plasma,” Phys. Plasmas, 17, 104504 (2010). https://doi.org/10.1063/1.3491433
W.M. Moslem, “Self-similar expansion of white dwarfs. Astrophys,” Space Sci. 342, 351-355 (2012). https://doi.org/10.1007/s10509-012-1185-4
N. Roy, S. Tasnim, and A.A. Mamun, “Solitary waves and double layers in an ultra-relativistic degenerate dusty electron-positron-ion plasma,” Phys. Plasmas, 19, 033705 (2012). https://doi.org/10.1063/1.3688877
I. Zeba, W.M. Moslem, and P.K. Shukla, “Ion solitary pulses in warm plasmas with ultrarelativistic degenerate electrons and positrons,” Astrophys. J. 750, 72 (2012). https://doi.org/10.1088/0004-637X/750/1/72
S.A. Shan, A. Ur-Rehman, and A. Mushtaq, “Ion-acoustic solitary waves in a positron beam plasma with electron trapping and nonextensivity effects,” Phys. Plasmas, 24, 032104 (2017). https://doi.org/10.1063/1.4978294
A.U. Rahman, S. Ali, A. Mushtaq, and A. Qamar, “Nonlinear ion acoustic excitations in relativistic degenerate, astrophysical electron–positron–ion plasmas,” J. Plasma Phys. 79, 817-823 (2013). https://doi.org/10.1017/S0022377813000524
B. Hosen, M.G. Shah, R.M. Hossen, and A.A. Mamun, “Ion-acoustic solitary waves and double layers in a magnetized degenerate quantum plasma,” IEEE Trans. Plasma Sci. 45, 3316-3327 (2017). https://doi.org/10.1109/TPS.2017.2766167
A. Abdikian, A. Saha, and S. Alimirzaei, “Bifurcation analysis of ion-acoustic waves in an adiabatic trapped electron and warm ion plasma.” J. Taibah Univ. Sci. 14, 1051-1058 (2020). https://doi.org/10.1080/16583655.2020.1798062
M.K. Islam, S. Biswas, N.A. Chowdhury, A. Mannan, M. Salahuddin, and A.A. Mamun, “Obliquely propagating ion‐acoustic shock waves in a degenerate quantum plasma,” Contrib. Plasma Phys. 62, 202100073 (2022). https://doi.org/10.1002/ctpp.202100073
M.M. Haider, and A.A. Mamun, “Ion-acoustic solitary waves and their multi-dimensional instability in a magnetized degenerate plasma,” Phys. Plasmas. 19, 102105 (2012). https://doi.org/10.1063/1.4757218
A. Abdikian, and B. Ghanbari, “On a modified Korteweg–de Vries equation for electrostatic structures in relativistic degenerate electron–positron plasma,” Results Phys. 48, 106399 (2023). https://doi.org/10.1016/j.rinp.2023.106399
M. Adnan, G. Williams, A. Qamar, S. Mahmood, and I. Kourakis, “Pressure anisotropy effects on nonlinear electrostatic excitations in magnetized electron-positron-ion plasmas,” Eur. Phys. J. D, 68, 1-15 (2014). https://doi.org/10.1140/epjd/e2014-50384-y
M.K. Deka, B. Pradhan, A.N. Dev, D. Mahanta, J. Manafian, and K.H. Mahmoud, “Shock Waves in Ion-Beam-Depleted Spin-Polarized Quantum Plasma with Ionic Pressure Anisotropy,” Plasma, 8, 3 (2025). https://doi.org/10.3390/plasma8010003
M. Ahmad, M. Adnan, and A. Qamar, “Magnetosonic shock waves in degenerate electron–positron–ion plasma with separated spin densities,” Phys. Fluids, 36, 087115 (2024). https://doi.org/10.1063/5.0216452
R. Jahangir, and S. Ali, “Nonlinear ion-acoustic waves in degenerate plasma with landau quantized trapped electrons,” Front. Phys. 9, 622820 (2021). https://doi.org/10.3389/fphy.2021.622820
H. Schamel, and B. Sarbeswar, “Analytical double layers,” Phys. Fluids, 26, 190-193 (1983). https://doi.org/10.1063/1.864006
H. Schamel, “Weak double layers: Existence, stability, evidence,” Z. fur Naturforsch. - J. Phys. Sci. 38, 1170-1183 (1983). https://doi.org/10.1515/zna-1983-1102
H. Schamel, and V.I. Maslov, “Adiabatic growth of electron holes in current-carrying plasmas,” Phys. Scr. 50, 42 (1994). https://doi.org/10.1088/0031-8949/1994/T50/006
V. Maslov, and H. Schamel, “Growing electron holes in drifting plasmas,” Phys. Lett. A, 178, 171-174 (1993). https://doi.org/10.1016/0375-9601(93)90746-M
R. Kaur, and N.S. Saini, “Ion acoustic shocks in a weakly relativistic ion-beam degenerate magnetoplasma,” Galaxies, 9, 64 (2021). https://doi.org/10.3390/galaxies9030064
M.J. Iqbal, W. Masood, H.A. Shah, and N.L. Tsintsadze, “Nonlinear density excitations in electron-positron-ion plasmas with trapping in a quantizing magnetic field,” Phys. Plasmas, 24, 014503 (2017). https://doi.org/10.1063/1.4973830
M.A. El-Borie, M. Abd-Elzaher, and A. Atteya, “Obliquely propagating ion-acoustic solitary and shock waves in magnetized quantum degenerate multi-ions plasma in the presence of trapped electrons,” Chin. J. Phys. 63, 258-270 (2020). https://doi.org/10.1016/j.cjph.2019.10.004
H.A. Shah, M.N.S. Qureshi, and N. Tsintsadze, “Effect of trapping in degenerate quantum plasmas,” Phys. Plasmas, 17, 032312 (2010). https://doi.org/10.1063/1.3368831
S.Y. El-Monier, and A. Atteya, “Dynamics of ion-acoustic waves in nonrelativistic magnetized multi-ion quantum plasma: the role of trapped electrons,” Waves Random Complex Media, 32, 299-317 (2022). https://doi.org/10.1080/17455030.2020.1772522
T. Yeashna, R.K. Shikha, N.A. Chowdhury, A. Mannan, S. Sultana, and A. Mamun, “Ion-acoustic shock waves in magnetized pair-ion plasma,” Eur. Phys. J. D, 75, 1-7 (2021). https://doi.org/10.1140/epjd/s10053-021-00139-y
N.A. Zedan, A. Atteya, W.F. El-Taibany, and S.K. El-Labany, “Stability of ion-acoustic solitons in a multi-ion degenerate plasma with the effects of trapping and polarization under the influence of quantizing magnetic field,” Waves Random Complex Media, 32, 728-742 (2022). https://doi.org/10.1080/17455030.2020.1798560
P. Halder, K.N. Mukta, and A.A. Mamun, “Nonlinear propagation of dust-ion-acoustic shock waves in a degenerate multi-species plasma,” Int. J. Cosmol. Astron. Astrophys. 1, 81-87 (2019). http://dx.doi.org/10.18689/ijcaa-1000119
S. Hussain, H. Ur-Rehman, and S. Mahmood, ” The effect of magnetic field quantization on the propagation of shock waves in quantum plasmas,” Phys. Plasmas. 26, 052105 (2019). https://doi.org/10.1063/1.5090181
M. Asaduzzaman, M.A.A. Mamun, and A.A. Mamun, “Obliquely Propagating Self-Gravitational Shock Waves in Non-Relativistic Degenerate Quantum Plasmas,” J. Eng. Sci. Technol. Rev. 15(1), 21-29 (2024). https://doi.org/10.3329/jes.v15i1.76030
M.K. Deka, and A.N. Dev, “Wave propagation with degenerate electron–positron in magnetically quantised ion beam plasma,” Pramana, 95, 65 (2021). https://doi.org/10.1007/s12043-021-02081-5
M. Irfan, S. Ali, and A.M. Mirza, “Solitary waves in a degenerate relativistic plasma with ionic pressure anisotropy and electron trapping effects,” Phys. Plasmas. 24, 052108 (2017). https://doi.org/10.1063/1.4981932
S. Jahan, T.S. Roy, B.E. Sharmin, N.A. Chowdhury, A. Mannan, and A.A. Mamun, “Magnetized ion-acoustic shock waves in degenerate quantum plasma,” arXiv preprint arXiv 2103, 15863 (2021). https://doi.org/10.48550/arXiv.2103.15863
A. Ur-Rahman, I. Kourakis, and A. Qamar, “Electrostatic solitary waves in relativistic degenerate electron–positron–ion plasma,” IEEE Trans. Plasma Sci. 43, 974-984 (2015). https://doi.org/10.1109/TPS.2015.2404298
M.K. Deka, D. Mahanta, A.N. Dev, J. Sarma, S.K. Mishra, E. Saikia, “Features of shock wave in a quantized magneto plasma under the influence of ionic pressure anisotropy and anisotropic viscosity,” AIP Conf. Proc. 2819, 070005 (2023). https://doi.org/10.1063/5.0137746
I. Alazman, B.S.T. Alkahtani, M. Ur-Rahman, and M.N. Mishra, “Nonlinear complex dynamical analysis and solitary waves for the (3+1)-D nonlinear extended Quantum Zakharov–Kuznetsov equation,” Results Phys. 58, 107432 (2024). https://doi.org/10.1016/j.rinp.2024.107432
W. Albalawi, M.M. Hammad, M. Khalid, A. Kabir, C.G. Tiofack, and S.A. El-Tantawy, “On the shock wave structures in anisotropy magnetoplasmas,” AIP Advances, 13, 105309 (2023). https://doi.org/10.1063/5.0173000
B. Boro, A.N. Dev, B.K. Saikia, and N.C. Adhikary, “Nonlinear dust ion acoustic shock wave structures in solar F corona region,” Phys. Plasmas, 27, 122901 (2020). https://doi.org/10.1063/5.0023283
B. Pradhan, B. Boro, A.N. Dev, J. Manafian, and N.A. Alkader, “Effect of ion anisotropy pressure in viscous plasmas: evolution of shock wave,” Nonlinear Dyn. 112, 17403-17416 (2024). https://doi.org/10.1007/s11071-024-09994-x
S. Jahan, B.E. Sharmin, N.A. Chowdhury, A. Mannan, T.S. Roy, and A.A. Mamun, “Electrostatic ion-acoustic shock waves in a magnetized degenerate quantum plasma,” Plasma, 4, 426-434 (2021). https://doi.org/10.3390/plasma4030031
T. Sarkar, S. Roy, S. Raut, and P.C. Mali, “Studies on the dust acoustic shock, solitary, and periodic waves in an unmagnetized viscous dusty plasma with two-temperature ions,” Braz. J. Phys. 53, 12 (2023). https://doi.org/10.1007/s13538-022-01221-5
Z. Iqbal, H.A. Shah, M.N.S. Qureshi, W. Masood, and A. Fayyaz, “Nonlinear dynamical analysis of drift ion acoustic shock waves in Electron-Positron-Ion plasma with adiabatic trapping,” Results Phys. 41, 105948 (2022). https://doi.org/10.1016/j.rinp.2022.105948
A. Atteya, M.A. El-Borie, G.D. Roston, A.A.S. El-Helbawy, P.K. Prasad, and A. Saha, “Ion-acoustic stable oscillations, solitary, periodic and shock waves in a quantum magnetized electron–positron–ion plasma,” Z. fur Naturforsch. - J. Phys. Sci. 76, 757 768 (2021). https://doi.org/10.1515/zna-2021-0060
S.N. Chow, and J.K. Hale, Methods of bifurcation theory, (Springer Science & Business Media, 2012).
J. Guckenheimer, and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, (Springer Science & Business Media, 2013).
Copyright (c) 2025 Balaram Pradhan, Apul Narayan Dev, Manoj K. Deka

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



