Impact of Combined Chemical Reactions and Thermal Dispersion on Convective Flow in Hybrid Nanofluid Porous Medium
Abstract
The present study is characterized by numerical analysis concerning thermal dispersion's influence on heat and mass transfer flow towards a stretching plate in a saturated porous medium filled with Cu/Al2O3-water hybrid nanofluid, considering the presence of homogeneous (HOM)-heterogeneous (HET) chemical reactions. A new model of (HOM-HET) chemical reactions is constructed where the (HET) reactions occur on the surfaces of the solid matrix within the porous medium and the plate, following first-order kinetics. In contrast, the homogeneous (HOM) reaction takes place in the fluid phase and is described by isothermal cubic autocatalytic kinetics. The momentum, energy, and mass transfer phenomena are governed by a set of partial differential equations with appropriate similarity transformations that yield four coupled nonlinear ordinary differential equations. The resulting system of governing equations is solved numerically through a computationally efficient finite-difference scheme. The numerical results are validated through comparison with available data, showing good agreement. The numerical results demonstrate the influence of physical control parameters on the flow dynamics, thermal distribution, and solute concentration profiles. Furthermore, key solution characteristics, including the Nusselt number and skin friction coefficient, are tabulated.
Downloads
References
K. Khanafer and K. Vafai, J. Therm. Anal. Calorim. 135, 1479 (2019). https://doi.org/10.1007/s10973-018-7565-4
K. Vafai, Handbook of porous media, third Ed., (CRC Press, New York, 2015). https://doi.org/10.1201/b18614
Y. Mahmoudi, K. Hooman and K. Vafai, Convective Heat Transfer in Porous Media, first Ed., (CRC Press, New York, 2019). https://doi.org/10.1201/9780429020261
D.A. Nield and A. Bejan, Convection in Porous Media, fifth Ed., (Springer, New York, 2017). https://doi.org/10.1007/978-3-319-49562-0
C. Sowmiya and B.R. Kumar, Therm. Sci. Eng. Prog. 53, 102772 (2024). https://doi.org/10.1016/j.tsep.2024.102772
S. Khalil, T. Abbas and R. Nawaz, Nano-Struct. Nano-Objects, 40, 101350 (2024). https://doi.org/10.1016/j.nanoso.2024.101350
D. Pal, and G. Mandal, J. Pet. Sci. Eng. 126, 16 (2015). https://doi.org/10.1016/j.petrol.2014.12.006.
J.A. Adigun, A. Adeniyan and I.O. Abial, Int. Commun. Heat Mass Transfer, 126, 105479 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105479
S. Nandi, B. Kumbhakar, and S. Sarkar, Int. Commun. Heat Mass Transfer, 130, 105791 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105791
K.K. Asogwa, B.S. Goud, Y.D. Reddy and A.A. Ibe, Results Eng. 15, 100518 (2022). https://doi.org/10.1016/j.rineng.2022.100518
P.K. Kameswaran, P. Sibanda, Bound. Value Probl. 2013 (2013) 1-12. https://doi.org/10.1186/1687-2770-2013-243.
A.M. Bouaziz, S. Hanini, J. Mech. 32 (2016) 441 – 451. https://doi.org/10.1017/jmech.2016.18.
M.A. Sheremet, I. Pop, and N. Bachok, Int. J. Heat Mass Transfer 92, 1053 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.071
Ch. RamReddy and Ch. Venkata Rao, Nonlinear Eng. 6, 277 (2017). https://doi.org/10.1515/nleng-2016-0071
P. Sudhagar, P.K. Kameswaran, and B.R. Kumar, J. Porous Media, 23, 923 (2020). https://doi.org/10.1615/JPorMedia.2020024874
F.G. Awad, P. Sibanda and P.V.S.N. Murthy, ASME J. Heat Mass Transfer, 137, 104501 (2015). https://doi.org/10.1115/1.4024895
Om P. Meena, P. Janapatla and G. Kumar, Appl. Math. Comput. 430, 127072 (2022). https://doi.org/10.1016/j.amc.2022.127072
N.S. Khashi'ie, N.Md. Arifin, and I. Pop, Int. Commun. Heat Mass Transfer, 118, 104866 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104866
X. Song, L.D. Schmidt and R. Aris, Chem. Eng. Sci. 46, 1203 (1991). https://doi.org/10.1016/0009-2509(91)85049-4
M.A. Chaudhary, and J.H. Merkin, Fluid Dyn. Res. 16, 311 (1995). https://doi.org/10.1016/01695983(95)00015-6
J.H. Merkin, Math. Comput. Model. Dyn. 24, 125 (1996). https://doi.org/10.1016/08957177(96)00145-8
F. Alzahrani, R.J.P. Gowda, R.N. Kumar, and M.I. Khan, J. Indian Chem. Soc. 99, 100458 (2022). https://doi.org/10.1016/j.jics.2022.100458
Ch. Liu, M. Pan, L. Zheng and P. Lin, Int. Commun. Heat Mass Transfer, 110, 104434 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2019.104434
S. Bashir, I.M. Almanjahie, M. Ramzan, A.N. Cheema, M. Akhtar and F. Alshahrani, Heliyon, 10, e24718 (2024). https://doi.org/10.1016/j.heliyon.2024.e24718
M. Irfan, M. Khan and W.A. Khan, J. Braz. Soc. Mech. Sci. Eng. 41, 135 (2019). https://doi.org/10.1007/s40430-019-1619-9
P. Sunthrayuth, S.A. Abdelmohsen, M.B. Rekha, K.R. Raghunatha, A.M. Abdelbacki, M.R. Gorji and B.C. Prasannakumara, Case Stud. Therm. Eng. 32, 32101897 (2022). https://doi.org/10.1016/j.csite.2022.101897
Z. Abbas and M. Sheikh, Chin. J. Chem. Eng. 25, 11 (2017). https://doi.org/10.1016/j.cjche.2016.05.019
T. Hayat, M.I. Khan, A. Alsaedi and M.I. Khan, J. Mol. Liq. 223, 960 (2016). https://doi.org/10.1016/j.molliq.2016.09.019
O. Plumb, in: Proc. First ASME/JSME Thermal Engineering Joint Conference 2, (Honolulu, HI, USA, 1983), pp. 17–21.
J.T. Hong and C.L. Tien, Int. J. Heat Mass Transfer, 30, 143 (1987). https://doi.org/10.1016/0017-9310(87)90067-6
S. Yagi, D. Kunii and K. Endo, Int. J. Heat Mass Transfer, 7, 333 (1964). https://doi.org/10.1016/0017-9310(64)90109-7
J.R. Babu, K.K. Kumar and S.S. Rao, Renewable Sustainable Energy Rev. 77, 551 (2017). https://doi.org/10.1016/j.rser.2017.04.040
B. Takabi and S. Salehi, Adv. Mech. Eng. 6, 147059 (2014). https://doi.org/10.1155/2014/147059
H.F. Oztop and E. Abu-Nada, Int. J. Heat Fluid Flow, 29, 1326 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009
H. Ali Agha, M.N. Bouaziz and S. Hanini, J. Mech. 31, 607 (2015). https://doi.org/10.1017/jmech.2015.28
M. Hussain, A. Ali, S.W. Yao, A. Ghaffar, and M. Inc, Case Stud. Therm. Eng. 31, 101809 (2022). https://doi.org/10.1016/j.csite.2022.101809
L. Shampine, I. Gladwell, and S. Thompson, Solving ODEs with matlab, first Ed., (Cambridge University Press, United Kingdom, 2003). https://doi.org/10.1017/S0025557200178088
N. Bachok, A. Ishak and I. Pop, Nanoscale Res. Lett. 6, 623 (2011). https://doi.org/10.1186/1556-276X-6-623
R. Nandkeolyar, S.S. Motsa and P. Sibanda, J. Nanotechnol. Eng. Med. 4, 041002 (2013). https://doi.org/10.1115/1.4027435
N.A. Yacob, A. Ishak and I. Pop, Int. J. Thermal. Sci. 50, 133 (2011). https://doi.org/10.1016/j.ijthermalsci.2010.10.008
P.K. Kameswaran, S. Shaw, P. Sibanda and P.V.S.N. Murthy, Int. J. Heat Mass Transfer, 57, 465 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.047
Copyright (c) 2025 Zohra Terbiche, Hamza Ali Agha, Soufiane Rahal, Nadir Boutalbi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



