Impact of Combined Chemical Reactions and Thermal Dispersion on Convective Flow in Hybrid Nanofluid Porous Medium

  • Zohra Terbiche Biomaterials and Transport Phenomena Laboratory (LBMPT), Faculty of technology, University Yahia Fares of Medea, Pole Urbain Medea, Algeria https://orcid.org/0009-0000-5241-326X
  • Hamza Ali Agha Biomaterials and Transport Phenomena Laboratory (LBMPT), Faculty of technology, University Yahia Fares of Medea, Pole Urbain Medea, Algeria; Mechanic, Materials and Energetic Laboratory (L2ME), Faculty of technology, University A. MIRA of Bejaia, Targua Ouzmour Bejaia, Algeria https://orcid.org/0009-0002-2152-886X
  • Soufiane Rahal Biomaterials and Transport Phenomena Laboratory (LBMPT), Faculty of technology, University Yahia Fares of Medea, Pole Urbain Medea, Algeria https://orcid.org/0000-0002-3252-8921
  • Nadir Boutalbi Mechanic, Materials and Energetic Laboratory (L2ME), Faculty of technology, University A. MIRA of Bejaia, Targua Ouzmour Bejaia, Algeria https://orcid.org/0009-0000-0382-5671
Keywords: Hybrid nanofluid, Thermal dispersion, Stagnation-point flow, Porous medium

Abstract

The present study is characterized by numerical analysis concerning thermal dispersion's influence on heat and mass transfer flow towards a stretching plate in a saturated porous medium filled with Cu/Al2O3-water hybrid nanofluid, considering the presence of homogeneous (HOM)-heterogeneous (HET) chemical reactions. A new model of (HOM-HET) chemical reactions is constructed where the (HET) reactions occur on the surfaces of the solid matrix within the porous medium and the plate, following first-order kinetics. In contrast, the homogeneous (HOM) reaction takes place in the fluid phase and is described by isothermal cubic autocatalytic kinetics. The momentum, energy, and mass transfer phenomena are governed by a set of partial differential equations with appropriate similarity transformations that yield four coupled nonlinear ordinary differential equations. The resulting system of governing equations is solved numerically through a computationally efficient finite-difference scheme. The numerical results are validated through comparison with available data, showing good agreement. The numerical results demonstrate the influence of physical control parameters on the flow dynamics, thermal distribution, and solute concentration profiles. Furthermore, key solution characteristics, including the Nusselt number and skin friction coefficient, are tabulated.

Downloads

Download data is not yet available.

References

K. Khanafer and K. Vafai, J. Therm. Anal. Calorim. 135, 1479 (2019). https://doi.org/10.1007/s10973-018-7565-4

K. Vafai, Handbook of porous media, third Ed., (CRC Press, New York, 2015). https://doi.org/10.1201/b18614

Y. Mahmoudi, K. Hooman and K. Vafai, Convective Heat Transfer in Porous Media, first Ed., (CRC Press, New York, 2019). https://doi.org/10.1201/9780429020261

D.A. Nield and A. Bejan, Convection in Porous Media, fifth Ed., (Springer, New York, 2017). https://doi.org/10.1007/978-3-319-49562-0

C. Sowmiya and B.R. Kumar, Therm. Sci. Eng. Prog. 53, 102772 (2024). https://doi.org/10.1016/j.tsep.2024.102772

S. Khalil, T. Abbas and R. Nawaz, Nano-Struct. Nano-Objects, 40, 101350 (2024). https://doi.org/10.1016/j.nanoso.2024.101350

D. Pal, and G. Mandal, J. Pet. Sci. Eng. 126, 16 (2015). https://doi.org/10.1016/j.petrol.2014.12.006.

J.A. Adigun, A. Adeniyan and I.O. Abial, Int. Commun. Heat Mass Transfer, 126, 105479 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105479

S. Nandi, B. Kumbhakar, and S. Sarkar, Int. Commun. Heat Mass Transfer, 130, 105791 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105791

K.K. Asogwa, B.S. Goud, Y.D. Reddy and A.A. Ibe, Results Eng. 15, 100518 (2022). https://doi.org/10.1016/j.rineng.2022.100518

P.K. Kameswaran, P. Sibanda, Bound. Value Probl. 2013 (2013) 1-12. https://doi.org/10.1186/1687-2770-2013-243.

A.M. Bouaziz, S. Hanini, J. Mech. 32 (2016) 441 – 451. https://doi.org/10.1017/jmech.2016.18.

M.A. Sheremet, I. Pop, and N. Bachok, Int. J. Heat Mass Transfer 92, 1053 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.071

Ch. RamReddy and Ch. Venkata Rao, Nonlinear Eng. 6, 277 (2017). https://doi.org/10.1515/nleng-2016-0071

P. Sudhagar, P.K. Kameswaran, and B.R. Kumar, J. Porous Media, 23, 923 (2020). https://doi.org/10.1615/JPorMedia.2020024874

F.G. Awad, P. Sibanda and P.V.S.N. Murthy, ASME J. Heat Mass Transfer, 137, 104501 (2015). https://doi.org/10.1115/1.4024895

Om P. Meena, P. Janapatla and G. Kumar, Appl. Math. Comput. 430, 127072 (2022). https://doi.org/10.1016/j.amc.2022.127072

N.S. Khashi'ie, N.Md. Arifin, and I. Pop, Int. Commun. Heat Mass Transfer, 118, 104866 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104866

X. Song, L.D. Schmidt and R. Aris, Chem. Eng. Sci. 46, 1203 (1991). https://doi.org/10.1016/0009-2509(91)85049-4

M.A. Chaudhary, and J.H. Merkin, Fluid Dyn. Res. 16, 311 (1995). https://doi.org/10.1016/01695983(95)00015-6

J.H. Merkin, Math. Comput. Model. Dyn. 24, 125 (1996). https://doi.org/10.1016/08957177(96)00145-8

F. Alzahrani, R.J.P. Gowda, R.N. Kumar, and M.I. Khan, J. Indian Chem. Soc. 99, 100458 (2022). https://doi.org/10.1016/j.jics.2022.100458

Ch. Liu, M. Pan, L. Zheng and P. Lin, Int. Commun. Heat Mass Transfer, 110, 104434 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2019.104434

S. Bashir, I.M. Almanjahie, M. Ramzan, A.N. Cheema, M. Akhtar and F. Alshahrani, Heliyon, 10, e24718 (2024). https://doi.org/10.1016/j.heliyon.2024.e24718

M. Irfan, M. Khan and W.A. Khan, J. Braz. Soc. Mech. Sci. Eng. 41, 135 (2019). https://doi.org/10.1007/s40430-019-1619-9

P. Sunthrayuth, S.A. Abdelmohsen, M.B. Rekha, K.R. Raghunatha, A.M. Abdelbacki, M.R. Gorji and B.C. Prasannakumara, Case Stud. Therm. Eng. 32, 32101897 (2022). https://doi.org/10.1016/j.csite.2022.101897

Z. Abbas and M. Sheikh, Chin. J. Chem. Eng. 25, 11 (2017). https://doi.org/10.1016/j.cjche.2016.05.019

T. Hayat, M.I. Khan, A. Alsaedi and M.I. Khan, J. Mol. Liq. 223, 960 (2016). https://doi.org/10.1016/j.molliq.2016.09.019

O. Plumb, in: Proc. First ASME/JSME Thermal Engineering Joint Conference 2, (Honolulu, HI, USA, 1983), pp. 17–21.

J.T. Hong and C.L. Tien, Int. J. Heat Mass Transfer, 30, 143 (1987). https://doi.org/10.1016/0017-9310(87)90067-6

S. Yagi, D. Kunii and K. Endo, Int. J. Heat Mass Transfer, 7, 333 (1964). https://doi.org/10.1016/0017-9310(64)90109-7

J.R. Babu, K.K. Kumar and S.S. Rao, Renewable Sustainable Energy Rev. 77, 551 (2017). https://doi.org/10.1016/j.rser.2017.04.040

B. Takabi and S. Salehi, Adv. Mech. Eng. 6, 147059 (2014). https://doi.org/10.1155/2014/147059

H.F. Oztop and E. Abu-Nada, Int. J. Heat Fluid Flow, 29, 1326 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009

H. Ali Agha, M.N. Bouaziz and S. Hanini, J. Mech. 31, 607 (2015). https://doi.org/10.1017/jmech.2015.28

M. Hussain, A. Ali, S.W. Yao, A. Ghaffar, and M. Inc, Case Stud. Therm. Eng. 31, 101809 (2022). https://doi.org/10.1016/j.csite.2022.101809

L. Shampine, I. Gladwell, and S. Thompson, Solving ODEs with matlab, first Ed., (Cambridge University Press, United Kingdom, 2003). https://doi.org/10.1017/S0025557200178088

N. Bachok, A. Ishak and I. Pop, Nanoscale Res. Lett. 6, 623 (2011). https://doi.org/10.1186/1556-276X-6-623

R. Nandkeolyar, S.S. Motsa and P. Sibanda, J. Nanotechnol. Eng. Med. 4, 041002 (2013). https://doi.org/10.1115/1.4027435

N.A. Yacob, A. Ishak and I. Pop, Int. J. Thermal. Sci. 50, 133 (2011). https://doi.org/10.1016/j.ijthermalsci.2010.10.008

P.K. Kameswaran, S. Shaw, P. Sibanda and P.V.S.N. Murthy, Int. J. Heat Mass Transfer, 57, 465 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.047

Published
2025-09-08
Cited
How to Cite
Terbiche , Z., Ali Agha, H., Rahal, S., & Boutalbi , N. (2025). Impact of Combined Chemical Reactions and Thermal Dispersion on Convective Flow in Hybrid Nanofluid Porous Medium. East European Journal of Physics, (3), 223-232. https://doi.org/10.26565/2312-4334-2025-3-19