Computer Simulation Study of Adsorption Processes of C20@Cn and C60@Cn (n=1-5) Carbon Clusters on Reconstructed Silicon Si(001) Surface

  • Ikrom Z. Urolov U.A. Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of the Republic of Uzbekistan, Tashkent; Mirzo Ulugbek National University of Uzbekistan, Republic of Uzbekistan, Tashkent
  • Farid F. Umarov Kazakhstan-British Technical University, Almaty, Kazakhstan
  • Ishmumin Yadgarov U.A. Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of the Republic of Uzbekistan, Tashkent https://orcid.org/0000-0002-4808-2258
  • Ganiboy T. Rakhmanov Mirzo Ulugbek National University of Uzbekistan, Republic of Uzbekistan, Tashkent
  • Khayitmurod I. Jabborov Tashkent state technical university named after Islam Karimov, Tashkent, Uzbekistan; Tashkent University of information technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan
Keywords: Fullerene molecule, Base, Cluster, Trench, Dimer array, Modeling, Potential, Bond, Simulation, Adsorption

Abstract

In today's nanotechnology field, one of the requirements of the current direction is the ability of carbon nanostructures to have a strong bond with the substrate surface among the materials formed by the interaction of different substrates with the surface of various substrates. The study and identification of new structures with similar properties is one of the problems facing modern theoretical research. The current research work was carried out as one of the solutions to the above-mentioned problems, in which the adsorption of fullerene molecules on silicon substrates using the molecular dynamics (MD) method is a continuation of our work on the adsorption of fullerene C20 and C60 molecules on the surface of silicon Si(001) reconstructed by Cn (n=1-5) carbon clusters was simulated using the open source LAMMPS package based on the molecular dynamics method. Using the Tersoff interatomic potential, the interactions between the atoms of the substrate, Cn cluster, and fullerene molecules were expressed, and the adsorption energies of C20@Cn and C60@Cn carbon clusters, the length and nature of Si-C bonds, as well as stable adsorption states in trench and dimer rows were determined.

Downloads

Download data is not yet available.

References

A.J. Du, Z. Y. Pan, Y. K. Ho, Z. Huang, and Z. X. Zhang, “Memory effect in the deposition of C20 fullerenes on a diamond surface,” Physical Review B, 66, 035405 (2002). https://doi.org/10.1103/PhysRevB.66.035405

S. Thakral, and R.M. Mehta, “Fullerenes: An introduction and overview of their biological properties,” Indian journal of pharmaceutical science, 68(1), 13-19 (2006). https://doi.org/10.4103/0250-474X.22957

S. Park, D. Srivastava, and K. Cho, “Endo-fullerenes and doped bucky onions as seed materials for solid state quantum bits,” in: Materials Research Society Symposium Proceedings. Volume 675. Nanotubes, Fullerenes, Nanostructured and Disordered Carbon, (San Francisco, California, USA, 2001). https://apps.dtic.mil/sti/tr/pdf/ADP012136.pdf

QIPD-DF, an EU funded project. http://planck.thphys.may.ie/QIPDDF

W. Harneit, “Fullerene-based electron-spin quantum computer,” Phys. Rev. A, 65, 184 (2002). https://doi.org/10.1103/PhysRevA.65.032322

C. Meyer, W. Harneit, B. Naydenov, K. Lips, and A. Weidinger, “N@C60 and P@C60 as quantum bits,” Appl. Magn. Reson. 27, 123–132 (2004). https://doi.org/10.1007/BF03166307

J. Lee, and M. Kang, “Structure and bonding nature of C60/Si(100)-c(4×4): density-functional theory calculations,” Phys. Rev. B, 7, 25305.1–25305.5 (2007). https://doi.org/10.1103/PhysRevB.75.125305

O. Senftleben, T. Stimpel-Lindner, I. Eisele, and H. Baumgaertner, “Epitaxial silicon overgrowth of C60 on the Si(100)-2×1 surface,” Surf. Sci. 602, 493–498 (2008). https://doi.org/10.1016/j.susc.2007.10.043

F. Yasunori, S. Koichiro, and K. Atsushi, “Transition of an adsorption state of C60 on a Si(111)7×7 surface revealed by high-resolution electron-energy-loss spectroscopy,” Physical Review B, 56, 12124 (1997). https://doi.org/10.1103/PhysRevB.56.12124

D.A. Olyanich, V.V. Mararov, T.V. Utas, A.V. Zotov, and A.A. Saranin, “Adsorption and self-assembly of fullerenes on Si(111) √3+√3 Ag: C60 versus C70,” Surface Science, 653, 138-142 (2016). https://doi.org/10.1016/j.susc.2016.06.016

S. Suto, K. Sakamoto, D. Kondo, T. Wakita, A. Kimura, A. Kakizaki, C.-W. Hu, et al., “Interaction of C60 with Si(111)7×7 and Si(100)2×1 surfaces studied by STM, PES and HREELS: annealing effect,” Surface Science, 438, 242-247 (1999). https://doi.org/10.1016/S0039-6028(99)00576-2

W. Haiqian, Z. Changgan, L. Qunxiang, W. Bing, Ya. Jinlong, J.G. Hou, and Q. Zhu, “Scanning tunneling spectroscopy of individual C60 molecules adsorbed on Si(111)-7×7 surface,” Surface Science, 442, 1024-1028 (1999). https://doi.org/10.1016/S0039-6028(99)00977-2

O. Kazuhiro, N. Masashi, U. Hirobumi, K. Tetsuo, Ya. Yoshiyuki, M. Kozo, J. Yoshinobu, et al., “Regioselective cycloaddition reaction of alkene molecules to the asymmetric dimer on Si(100)c(4x2),” J. Am. Chem. Soc. 129, 1242-1245 (2007). https://doi.org/10.1021/ja066285i

Ch. Dong, and S. Dror, “Temperature effects of adsorption of C60 molecules on Si(111)-(7×7) surfaces,” Physical Review B, 49, 7612 (1994). https://doi.org/10.1103/PhysRevB.49.7612

L.J. Yo, and H.K. Myung, “Adsorption structure of a single C60 molecule on Si(111)-(7×7): density-functional calculations,” Surface Science, 602, 1408-1412 (2008). https://doi.org/10.1016/j.susc.2008.02.014

P.D. Godwin, S.D. Kenny, R. Smith, and J. Belbruno, “The structure of C60 and endohedral C60 on the Si(100) surface,” Surface Science, 490, 409–414 (2001). https://doi.org/10.1016/S0039-6028(01)01365-6

P.D. Godwin, S.D. Kenny, and R. Smith, “The bonding sites and structure of C60 on the Si(100) surface,” Surf. Sci. 529, 237 246 (2003). https://doi.org/10.1016/S0039-6028(03)00074-8

B. Khaoula, D. Eric, S. Regis, H. Marie-Christine, and S. Philippe, “C60 molecules grown on a Si-supported Nanoporous Supramolecular Network: a DFT study,” Physical Chemistry Chemical Physics, 16(28), 14722–14729 (2014). https://doi.org/10.1039/C4CP01677G

I.Z. Urolov, I.D. Yadgarov, F.F. Umarov, G.T. Rakhmanov, and Kh.I. Jabbarov, “Computer Simulation of Adsorption of C60 Fullerene Molecule on Reconstructed Si(100) Surface,” East Eur. J. Phys. (2), 256-262 (2024). https://doi.org/10.26565/2312-4334-2024-2-25

J. Coro, M. Suarez, L.S.R. Silva, K.I.B. Eguiluz, and G.R. Salazar-Banda, “Fullerene applications in fuel cell: a review,” International journal of hydrogen energy, 41(40), 17944-17959 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.043

M. Yoon, S. Yang, E. Wang and Z. Zhang, “Charged Fullerenes as High-Capacity Hydrogen Storage Media,” Nano letters, 7, 2578-2583 (2007). https://doi.org/10.1021/nl070809a

H.J. Ren, C.X. Cui, X.J. Li, and Y.J. Liu, “A DFT study of the hydrogen storage potentials and properties of Na- and Li-doped fullerenes,” 42(1), 312-321 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.151

M.H. Yun, J.W. Kim, S.Y. Park, D.S. Kim, B. Walker, and J.Y. Kim, “High-efficiency, hybrid Si/C60 heterojunction solar cells,” Journal of materials chemistry A, 4, 16410-16417 (2016). https://doi.org/10.1039/c6ta02248k

T. Gattia, E. Mennaa, M. Meneghettia, M. Magginia, A. Petrozzab, and F. Lamberti, “The Renaissance of fullerenes with perovskite solar cells,” Nano energy, 41, 84 (2017). https://doi.org/10.1016/j.nanoen.2017.09.016

F. Moussa, “5-[60] Fullerene and derivatives for biomedical applications,” Nanobiomaterials, 113-136 (2018). https://doi.org/10.1016/B978-0-08-100716-7.00005-2

S. Thakral, and R.M. Mehta, “Fullerenes: An Introduction and Overview of Their Biological Properties Biological Properties,” Indian Journal of Pharmaceutical Sciences, 68, 13-19 (2006). https://doi.org/10.4103/0250-474X.22957

M.E. Turan, Y. Sun, and Y. Akgul, “Mechanical, tribological and corrosion properties of fullerene reinforced magnesium matrix composites fabricated by semi powder metallurgy,” Journal of alloys and compounds, 740, 1149-1158 (2018). https://doi.org/10.1016/j.jallcom.2018.01.103

S. Bronnikov, A. Podshivalov, S. Kostromin, M. Asandulesa, and V. Cozan, “Electrical conductivity of polyazomethine/fullerene C60 nanocomposites,” Physics letters A, 381, 796-800 (2017). http://dx.doi.org/10.1016/j.physleta.2016.12.045

P.A. Kumar, V.V. Namboodiri, G. Joshi, and K.P. Mehta, “Fabrication and applications of fullerene-based metal nanocomposites: A review,” Journal of materials research, 36, 114-128 (2021). http://dx.doi.org/10.1557/s43578-020-00094-1

S. Yao, X. Yuan, L. Jiang, T. Xiong, and J. Zhang, “Recent progress on fullerene-based materials: synthesis, properties, modifications, and photocatalytic applications,” Materials, 13, 1-39 (2020). https://doi.org/10.3390/ma13132924

I.D. Yadgarov, F.F. Umarov, A.S. Kosimov, Kh.I. Jabbarov, and Sh.Y. Aminov, “Simulation of interaction processes of C20 fullerene with graphene,” East Eur. J. Physics, (4), 226-230 (2023). https://doi.org/10.26565/2312-4334-2023-4-28

J. Li, Y. Cui, and L. Zhang, “C60 adsorption on defective Si(100) surface having one missied dimer from atomic simulations at electrical level,” Arabian journal of chemistry, 16, 104816 (2023). https://doi.org/10.1016/j.arabjc.2023.104816

H.W. Kroto, J.R. Heath, S.C. O’Brein, R.F. Curl and R.E. Smalley, “C60: Buckminsterfullerene,” Nature, 318, 162–163 (1985). https://doi.org/10.1038/318162a0

M. Paukov, Ch. Kramberger, I. Begichev, M. Kharlamova, and M. Burdanova, “Functionalized fullerenes and their applications in electrochemistry, solar cells, and nanoelectronics,” Materials, 16, 1276 (2023). https://doi.org/10.3390/ma16031276

M. Huijing, F. Xuyang, K. Shuangyu, and C. Yingxiang, “Adsorption geometries and interface electronic structure of C60 on Si(100)2×1 reconstruction surface,” Surface Science, 690, 121484 (2019). https://doi.org/10.1016/j.susc.2019.121484

M. Juris, “Goldberg variations challenge,” Analytical and Bioanalytical Chemistry, 385(1), 6–7 (2006). https://doi.org/10.1007/s00216-006-0358

Y. Miyamoto, and M. Saito, “Condensed phases of all-pentagon C20 cages as possible superconductors,” Phys. Rev. B, 63, 161401 (2001). https://doi.org/10.1103/PhysRevB.63.161401

M. Saito and Y. Miyamoto, “Theoretical Identification of the Smallest Fullerene, C20,” Physical review letters, 87(3), 035503 (2001). https://doi.org/10.1103/PhysRevLett.87.035503

I. Spagnolatti, M. Bernasconi, and G. Benedek, “Electron-phonon interaction in the solid form of the smallest fullerene C20,” Europhys. Lett. 59(4), 572–578 (2002). https://doi.org/10.1209/epl/i2002-00384-1

F. Lin, E.S. Sorenson, C. Kallin, and A.J. Berlinsky, “C20, the smallest fullerene,” in: Handbook of Nanophysics: Clusters and Fullerenes, edited by K.D. Sattler, (CRC Press, 2009).

W.M. Haynes, Handbook of chemistry and physics, 97th edition, (CRC press, 2017), pp. 4-33.

R. Taylor, J.P. Hare, A.K. Abdul-Sada, and H.W. Kroto, “Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon,” J. Chem. Soc. Chem. Commun. 1423, (1990). https://doi.org/10.1039/c39900001423

Sandia National Laboratories, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), 2023, https://www.lammps.org/

P. Erhart, and K. Albe, “Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide,” Physical Review B, 71, 035211 (2005). https://doi.org/10.1103/PhysRevB.71.035211

Java, Jmol, 2023, http://www.jmol.org/

W.G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions”, Physical Review A, 31, 1695 (1985). https://doi.org/10.1103/PhysRevA.31.1695

Y.S. Al-Hamdani, et al., “Properties of the water to boron nitride interaction: From zero to two dimensions with benchmark accuracy,” Journal of Chemical Physics, 144, 154706 (2016). https://doi.org/10.1063/1.4985878

D.C. Sorescu, et al., “First-principles calculations of the adsorption, diffusion, and dissociation of a CO molecule on the Fe (100) surface,” Physical Review B, 66, 035416 (2002). https://doi.org/10.1103/PhysRevB.66.035416

C. Zhou, J. Wu, B. Han, S. Yao, and H. Cheng, “Adsorption of fullerenes Cn (n=32,36,40,44,48,60) on the GaAs(001)-c(4times4) reconstructed surface,” Physical review B, 73, 195234 (2006).

F. Demiray, I. Sidir, and Y.G. Sidir, “Structural and electronic properties of cyanide-coated fullerene C20@(CN)n (n = 0–20): An ab initio approach,” The European physical journal plus, 131, 250 (2016). https://doi.org/10.1140/epjp/i2016-16250-0

T. Sergeieva, D. Mandal, and D.M. Andrada, “Chemical Bonding in Silicon Carbonyl Complexes,” Chemistry – A European journal, 27, 1-10 (2021). http://dx.doi.org/doi.org/10.1002/chem.2021

W. Tan, et al., “Fullerene-like elastic carbon coatings on silicon nanoparticles by solvent controlled association of natural polyaromatic molecules as high-performance lithium-ion battery anodes,” Energy storage materials, 45, 412-421 (2022). https://doi.org/10.1016/j.ensm.2021.11.040

Published
2025-09-08
Cited
How to Cite
Urolov, I. Z., Umarov, F. F., Yadgarov, I., Rakhmanov, G. T., & Jabborov, K. I. (2025). Computer Simulation Study of Adsorption Processes of C20@Cn and C60@Cn (n=1-5) Carbon Clusters on Reconstructed Silicon Si(001) Surface. East European Journal of Physics, (3), 273-280. https://doi.org/10.26565/2312-4334-2025-3-24