Photodetectors for X- and γ-Ray Scintillators
Abstract
The article analyzes X- and γ-ray detectors based on the ionizing and scintillation principles of operation. The effectiveness of using silicon p-i-n and p-n photodiodes in scintillation sensors for detecting visible photoluminescent radiation is investigated. The p-i-n detector was fabricated on the basis of p-type single crystal silicon with orientation [111] and resistivity 8-10 kΩ∙cm. The p-n photodiode was fabricated on the basis of n-type single crystalline silicon with orientation [111] and resistivity 200-300 Ω∙cm. It was found that p-n photodiodes have a much lower dark current than p-i-n photodiodes (although somewhat inferior in sensitivity), which provides their advantage in detectivity. However, if it is necessary to register short pulses of luminescent radiation, p-i-n photodiodes should be used, since they have a higher response speed. The increase in response speed is due to the fact that the process of diffusion of charge carriers in a p-n structure of a photodiode is replaced in the p-i-n structure by the drift of charge carriers through the i-region in a strong electric field.
Downloads
References
T.B. Feldman, M.A. Yakovleva, and M.A. Ostrovsky, Experimental Eye Research, 252, 110270 (2025). https://doi.org/10.1016/j.exer.2025.110270
B. Huang, Y. Liu, X. Sun, L. Huang, S. Dong, and L. Mao, National Science Open, 4(1), 20240021 (2025). https://doi.org/10.1360/nso/20240021
D.P. Frush, et al., Journal of Applied Clinical Medical Physics, e70022, 1-11 (2025). https://doi.org/10.1002/acm2.70022
N. Tsoulfanidis, and S. Landsberger, Measurement and Detection of Radiation (CRC Press, 2021). https://doi.org/10.1201/9781003009849
Y. He, I. Hadar, and M.G. Kanatzidis, Nature Photonics, 16(1), 14-26 (2022). https://doi.org/10.1038/s41566-021-00909-5
R.V. Berestov, and N.Ye. Hots, Visnyk Cherkaskoho derzhavnoho tekhnolohichnoho universytetu. Tekhnichni nauky, 3, 14-23 (2021). https://doi.org/10.24025/2306-4412.3.2021.243580 (in Ukrainian)
Y. He, et al., Nature Photonics, 15, 36–42 (2021). https://doi.org/10.1038/s41566-020-00727-1
A. Datta, et al., Applied Physics Letters Materials, 5, 106109 (2017). https://doi.org/10.1063/1.5001181
N. Vyhnan, and Y. Khalavka, Luminescence, 29(7), 952-954 (2014). https://doi.org/10.1002/bio.2600
I. Fodchuk, et al., Proceedings of SPIE, 11369, 113691H (2020). https://doi.org/10.1117/12.2553970
D. Vorontsov, et al., CrystEngComm, 19(45), 6804–6810 (2017). https://doi.org/10.1039/C7CE01688C
I. Fodchuk, et al., Physics and Chemistry of Solid State, 23(1), 144-149 (2022). https://doi.org/10.15330/pcss.23.1.144-149
E.V. Maistruk, et al., Engineering Research Express, 2(3), 035037 (2020). https://doi.org/10.1088/2631-8695/abb7e5
E.V. Maistruk, et al., Journal of Nano- and Electronic Physics, 11(2), 02007 (2019). https://doi.org/10.21272/jnep.11(2).02007
I.G. Orletskyi, et al., Materials Research Express, 8(1), 015905 (2021). https://doi.org/10.1088/2053-1591/abdbf8
K. Takagi, et al., in: IEEE Transactions on Nuclear Science, 68(9), 2435–2439 (2021). https://doi.org/10.1109/TNS.2021.3078448
B.B. Zhang, et al., Applied Physics Letters, 116, 063505 (2020). https://doi.org/10.1063/1.5134108
A.E. Bolotnikov, et al., in: 2007 IEEE Nuclear Science Symposium Conference Record, 1788-1797, (2007). https://doi.org/10.1109/NSSMIC.2007.4436507
A.E. Bolotnikov, et al., Journal of Crystal Growth, 379, 46-56 (2013). https://doi.org/10.1016/j.jcrysgro.2013.01.048
O. Kopach, et al., Journal of Phase Equilibria and Diffusion, 45, 612-620 (2024). https://doi.org/10.1007/s11669-024-01116-9
V. Kopach, et al., in: Proc. SPIE. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXIII, 11838, 1183819, 155–161 (2021). https://doi.org/10.1117/12.2594545
U.N. Roy, et al., Sci. Rep. 9, 7303 (2019). https://doi.org/10.1038/s41598-019-43778-3
S.U. Egarievwe et al. “Advances in CdMnTe Nuclear Radiation Detectors Development”, IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, NSW, Australia, pp. 1-3 (2018).
A. Masłowska, et al., Sensors, 24(2), 345 (2024). https://doi.org/10.3390/s24020345
W.W. Moses, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 487(1-2), 123-128 (2002). https://doi.org/10.1016/S0168-9002(02)00955-5
M.A. Jafarov, and S. A. Jahangirova, Phys. Solid State, 67, 207–213 (2025). https://doi.org/10.1134/S106378342460211X
O.H. Trubayeva, et al., Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 3, 43-49 (2018). http://dx.doi.org/10.15222/TKEA2018.3.43 (in Ukrainian)
S. Bhatnagar, arXiv preprint arXiv:2401.14706 (2024). https://doi.org/10.48550/arXiv.2401.14706
Y.L. Yan, et al., J. Polym. Res., 32, 19 (2025). https://doi.org/10.1007/s10965-024-04206-x
I.L. Matos, et al.,Int. J. Appl. Ceram. Technol., 22(1), e14911 (2025). https://doi.org/10.1111/ijac.14911
P. Roos, in: Handbook of Nuclear Medicine and Molecular Imaging for Physicists (ed. by M. Ljungberg) (CRC Press, 107-128, 2022). https://doi.org/10.1201/9780429489556.
N. Cichocka, et al., Nanotechnology, 33(3),035702 (2021). https://doi.org/10.1088/1361-6528/ac2e74
J. Jegal, H.W. Park, and H.J. Kim, IEEE Transactions on Nuclear Science, 68(6), 1304-1308 (2021) https://doi.org/10.1109/TNS.2021.3070040
S.J. van der Sar, S.E. Brunner, and D.R. Schaart, Medical Physics, 48(10), 6324-6338 (2021). https://doi.org/10.1002/mp.14886
M.S. Kukurudziak, and E.V. Maistruk, in: Fifteenth International Conference on Correlation Optics, 121261V (SPIE, Chernivtsi, 2021). https://doi.org/10.1117/12.2616170
S.A. Canazza, et al., in: 2021 International Nuclear Atlantic Conference – INAC 2021 Virtual meeting, (2021). http://repositorio.ipen.br/handle/123456789/32524
Z.W. Bell, Scintillators and Scintillation Detectors. in: Handbook of Particle Detection and Imaging, (Springer, Cham. 413-449, 2021). https://doi.org/10.1007/978-3-319-93785-4_15
Passport data Si PIN photodiodes S2744/S3588-08, -09, Electronic resource https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s2744-08_etc_kpin1049e.pdf)
Passport data Si PIN photodiodes S2744-09, https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S2744-09.html
Passport data Si PIN photodiode S3204-08, https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S3204-08.html
Passport data Si PIN photodiodeS3584-08, https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S3584-08.html
Passport data Si PIN photodiode S3590-18, https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S3590-18.html
Passport data Si photodiode S12497, https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S12497.html
Passport data Si photodiode S12498, https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S12498.html
M.S. Kukurudziak, Journal of nano- and electronic physics, 14(1), 01023 (2022). https://doi.org/10.21272/jnep.14(1).01023
S.B. Khan, S. Irfan, Z. Zhuanghao and S.L. Lee, Materials, 12(9), 1483 (2019). https://doi.org/10.3390/ma12091483
К.V. Ravi, Imperfections and impurities in semiconductor silicon, (Wiley, New York, 1981).
N.M. Tugov, B.A. Glebov, and N. Charykov, Semiconductor devices: Textbook for universities, edited by V.A. Labuntsov, (Energoatomizdat, Moscow, 1990). (in Russian)
M.S. Kukurudziak, Journal of Instrumentation, 19(09), P09006 (2024). https://doi.org/10.1088/1748-0221/19/09/P09006
S.N. Moger, and M. Mahesha, Sensors and Actuators A: Physical, 315, 112294 (2020). https://doi.org/10.1016/j.sna.2020.112294
S.M. Sze, and K.K. Ng, Physics of semiconductor devices, (Wiley, 2006).
A.V. Igo, Opt. Spectrosc. 128, 1125 (2020). https://doi.org/10.1134/S0030400X20080135
M.S. Kukurudziak, and E.V. Maistruk, East Eur. J. Phys. 1, 386 (2024). https://doi.org/10.26565/2312-4334-2024-1-39
J.J. van Blaaderen, et. al., Chemistry of Materials, 37(5), 1716-1740 (2025) https://doi.org/10.1021/acs.chemmater.4c03437
A. Rawat, and M.S. Islam, in: Physics and Simulation of Optoelectronic Devices XXXII. SPIE, 12880, 128800Q (2024). https://doi.org/10.1117/12.3003413
Copyright (c) 2025 Mykola S. Kukurudziak, Ivan P. Koziarskyi, Mykola S. Solodkyi, Eduard V. Maistruk, Vasylyna V. Kopach, Yurii O. Semeniuk, Mykola M. Pavliuk

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



