Photodetectors for X- and γ-Ray Scintillators

Keywords: Photoluminescence, Zinc Selenide, Silicon, CdTe, Electrical Properties, Detectivity, Photodiodes

Abstract

The article analyzes X- and γ-ray detectors based on the ionizing and scintillation principles of operation. The effectiveness of using silicon p-i-n and p-n photodiodes in scintillation sensors for detecting visible photoluminescent radiation is investigated. The p-i-n detector was fabricated on the basis of p-type single crystal silicon with orientation [111] and resistivity 8-10 kΩ∙cm. The p-n photodiode was fabricated on the basis of n-type single crystalline silicon with orientation [111] and resistivity 200-300 Ω∙cm. It was found that p-n photodiodes have a much lower dark current than p-i-n photodiodes (although somewhat inferior in sensitivity), which provides their advantage in detectivity. However, if it is necessary to register short pulses of luminescent radiation, p-i-n photodiodes should be used, since they have a higher response speed. The increase in response speed is due to the fact that the process of diffusion of charge carriers in a p-n structure of a photodiode is replaced in the p-i-n structure by the drift of charge carriers through the i-region in a strong electric field.

Downloads

Download data is not yet available.

References

T.B. Feldman, M.A. Yakovleva, and M.A. Ostrovsky, Experimental Eye Research, 252, 110270 (2025). https://doi.org/10.1016/j.exer.2025.110270

B. Huang, Y. Liu, X. Sun, L. Huang, S. Dong, and L. Mao, National Science Open, 4(1), 20240021 (2025). https://doi.org/10.1360/nso/20240021

D.P. Frush, et al., Journal of Applied Clinical Medical Physics, e70022, 1-11 (2025). https://doi.org/10.1002/acm2.70022

N. Tsoulfanidis, and S. Landsberger, Measurement and Detection of Radiation (CRC Press, 2021). https://doi.org/10.1201/9781003009849

Y. He, I. Hadar, and M.G. Kanatzidis, Nature Photonics, 16(1), 14-26 (2022). https://doi.org/10.1038/s41566-021-00909-5

R.V. Berestov, and N.Ye. Hots, Visnyk Cherkaskoho derzhavnoho tekhnolohichnoho universytetu. Tekhnichni nauky, 3, 14-23 (2021). https://doi.org/10.24025/2306-4412.3.2021.243580 (in Ukrainian)

Y. He, et al., Nature Photonics, 15, 36–42 (2021). https://doi.org/10.1038/s41566-020-00727-1

A. Datta, et al., Applied Physics Letters Materials, 5, 106109 (2017). https://doi.org/10.1063/1.5001181

N. Vyhnan, and Y. Khalavka, Luminescence, 29(7), 952-954 (2014). https://doi.org/10.1002/bio.2600

I. Fodchuk, et al., Proceedings of SPIE, 11369, 113691H (2020). https://doi.org/10.1117/12.2553970

D. Vorontsov, et al., CrystEngComm, 19(45), 6804–6810 (2017). https://doi.org/10.1039/C7CE01688C

I. Fodchuk, et al., Physics and Chemistry of Solid State, 23(1), 144-149 (2022). https://doi.org/10.15330/pcss.23.1.144-149

E.V. Maistruk, et al., Engineering Research Express, 2(3), 035037 (2020). https://doi.org/10.1088/2631-8695/abb7e5

E.V. Maistruk, et al., Journal of Nano- and Electronic Physics, 11(2), 02007 (2019). https://doi.org/10.21272/jnep.11(2).02007

I.G. Orletskyi, et al., Materials Research Express, 8(1), 015905 (2021). https://doi.org/10.1088/2053-1591/abdbf8

K. Takagi, et al., in: IEEE Transactions on Nuclear Science, 68(9), 2435–2439 (2021). https://doi.org/10.1109/TNS.2021.3078448

B.B. Zhang, et al., Applied Physics Letters, 116, 063505 (2020). https://doi.org/10.1063/1.5134108

A.E. Bolotnikov, et al., in: 2007 IEEE Nuclear Science Symposium Conference Record, 1788-1797, (2007). https://doi.org/10.1109/NSSMIC.2007.4436507

A.E. Bolotnikov, et al., Journal of Crystal Growth, 379, 46-56 (2013). https://doi.org/10.1016/j.jcrysgro.2013.01.048

O. Kopach, et al., Journal of Phase Equilibria and Diffusion, 45, 612-620 (2024). https://doi.org/10.1007/s11669-024-01116-9

V. Kopach, et al., in: Proc. SPIE. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XXIII, 11838, 1183819, 155–161 (2021). https://doi.org/10.1117/12.2594545

U.N. Roy, et al., Sci. Rep. 9, 7303 (2019). https://doi.org/10.1038/s41598-019-43778-3

S.U. Egarievwe et al. “Advances in CdMnTe Nuclear Radiation Detectors Development”, IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, NSW, Australia, pp. 1-3 (2018).

A. Masłowska, et al., Sensors, 24(2), 345 (2024). https://doi.org/10.3390/s24020345

W.W. Moses, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 487(1-2), 123-128 (2002). https://doi.org/10.1016/S0168-9002(02)00955-5

M.A. Jafarov, and S. A. Jahangirova, Phys. Solid State, 67, 207–213 (2025). https://doi.org/10.1134/S106378342460211X

O.H. Trubayeva, et al., Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 3, 43-49 (2018). http://dx.doi.org/10.15222/TKEA2018.3.43 (in Ukrainian)

S. Bhatnagar, arXiv preprint arXiv:2401.14706 (2024). https://doi.org/10.48550/arXiv.2401.14706

Y.L. Yan, et al., J. Polym. Res., 32, 19 (2025). https://doi.org/10.1007/s10965-024-04206-x

I.L. Matos, et al.,Int. J. Appl. Ceram. Technol., 22(1), e14911 (2025). https://doi.org/10.1111/ijac.14911

P. Roos, in: Handbook of Nuclear Medicine and Molecular Imaging for Physicists (ed. by M. Ljungberg) (CRC Press, 107-128, 2022). https://doi.org/10.1201/9780429489556.

N. Cichocka, et al., Nanotechnology, 33(3),035702 (2021). https://doi.org/10.1088/1361-6528/ac2e74

J. Jegal, H.W. Park, and H.J. Kim, IEEE Transactions on Nuclear Science, 68(6), 1304-1308 (2021) https://doi.org/10.1109/TNS.2021.3070040

S.J. van der Sar, S.E. Brunner, and D.R. Schaart, Medical Physics, 48(10), 6324-6338 (2021). https://doi.org/10.1002/mp.14886

M.S. Kukurudziak, and E.V. Maistruk, in: Fifteenth International Conference on Correlation Optics, 121261V (SPIE, Chernivtsi, 2021). https://doi.org/10.1117/12.2616170

S.A. Canazza, et al., in: 2021 International Nuclear Atlantic Conference – INAC 2021 Virtual meeting, (2021). http://repositorio.ipen.br/handle/123456789/32524

Z.W. Bell, Scintillators and Scintillation Detectors. in: Handbook of Particle Detection and Imaging, (Springer, Cham. 413-449, 2021). https://doi.org/10.1007/978-3-319-93785-4_15

Passport data Si PIN photodiodes S2744/S3588-08, -09, Electronic resource https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s2744-08_etc_kpin1049e.pdf)

Passport data Si PIN photodiodes S2744-09, https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S2744-09.html

Passport data Si PIN photodiode S3204-08, https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S3204-08.html

Passport data Si PIN photodiodeS3584-08, https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S3584-08.html

Passport data Si PIN photodiode S3590-18, https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S3590-18.html

Passport data Si photodiode S12497, https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S12497.html

Passport data Si photodiode S12498, https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S12498.html

M.S. Kukurudziak, Journal of nano- and electronic physics, 14(1), 01023 (2022). https://doi.org/10.21272/jnep.14(1).01023

S.B. Khan, S. Irfan, Z. Zhuanghao and S.L. Lee, Materials, 12(9), 1483 (2019). https://doi.org/10.3390/ma12091483

К.V. Ravi, Imperfections and impurities in semiconductor silicon, (Wiley, New York, 1981).

N.M. Tugov, B.A. Glebov, and N. Charykov, Semiconductor devices: Textbook for universities, edited by V.A. Labuntsov, (Energoatomizdat, Moscow, 1990). (in Russian)

M.S. Kukurudziak, Journal of Instrumentation, 19(09), P09006 (2024). https://doi.org/10.1088/1748-0221/19/09/P09006

S.N. Moger, and M. Mahesha, Sensors and Actuators A: Physical, 315, 112294 (2020). https://doi.org/10.1016/j.sna.2020.112294

S.M. Sze, and K.K. Ng, Physics of semiconductor devices, (Wiley, 2006).

A.V. Igo, Opt. Spectrosc. 128, 1125 (2020). https://doi.org/10.1134/S0030400X20080135

M.S. Kukurudziak, and E.V. Maistruk, East Eur. J. Phys. 1, 386 (2024). https://doi.org/10.26565/2312-4334-2024-1-39

J.J. van Blaaderen, et. al., Chemistry of Materials, 37(5), 1716-1740 (2025) https://doi.org/10.1021/acs.chemmater.4c03437

A. Rawat, and M.S. Islam, in: Physics and Simulation of Optoelectronic Devices XXXII. SPIE, 12880, 128800Q (2024). https://doi.org/10.1117/12.3003413

Published
2025-06-09
Cited
How to Cite
Kukurudziak, M. S., Koziarskyi, I. P., Solodkyi, M. S., Maistruk, E. V., Kopach, V. V., Semeniuk, Y. O., & Pavliuk, M. M. (2025). Photodetectors for X- and γ-Ray Scintillators. East European Journal of Physics, (2), 281-286. https://doi.org/10.26565/2312-4334-2025-2-34