Magnetic and Thermoelectric properties of RbCaYF(Y= C and N) Heusler alloys: Promising Candidates for Embedded Systems in Telecommunications

  • Kheira Bahnes Laboratory of Technology and Solids Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria; Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria https://orcid.org/0009-0007-3676-1126
  • Saliha Rezini Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria https://orcid.org/0000-0002-8080-3051
  • Amel Abbad Laboratory of Technology and Solids Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria; Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria https://orcid.org/0009-0006-1622-5564
  • Wissam Benstaali Laboratory of Technology and Solids Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria; Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria https://orcid.org/0000-0003-4634-6210
  • Noureddine Saidi Laboratory of Technology and Solids Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria; Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria https://orcid.org/0009-0004-5343-8572
  • Omar Belarbi Laboratory of Technology and Solids Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria; Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria https://orcid.org/0009-0002-6504-359X
Keywords: Half-metallic, d0 Heusler Alloys, Embedded systems, Thermoelectric Properties, Telecommunications, Wien2k

Abstract

On the basis of density functional theory, the structural, electronic, magnetic and thermoelectric properties of the d0 new quaternary Heusler alloys RbCaYF (Y= C and N) have been analyzed by means of first-principles calculations. The results predict a stable atomic arrangement in Y-type (III) phase with a ferromagnetic order. The two compounds were found to be half-metallic ferromagnets (HMFs) with an integer magnetic moment of 2µB for RbCaCF and 1µB for RbCaNF. The ferromagnetism observed is originated from the polarization of the p-Y orbitals with an sp-hybridization. In addition, RbCaCF and RbCaNF display large half metallic (HM) gaps of 0.879, 0.672 eV using Generalized Gradient Approximation (GGA), and 1.730, 1.934 eV with Generalized Gradient Approximation Modified Becke and Johnson (GGA-mBJ) respectively demonstrating stable half metallic features. Besides, thermoelectric properties were computed over a wide range of temperatures. The two Heusler alloys exhibit high values of electric conductivity and figure of merit especially at high temperatures. RbCaCF and RbCaNF d0 Heusler alloys present high spin polarization, robust half-metallicity and high thermoelectric coefficients, which makes them good candidates for spintronic and thermoelectric applications leading to promising enhancements for embedded systems in telecommunications.

Downloads

Download data is not yet available.

References

R.A. De Groot, F.M. Mueller, P.V. van Engen, and K.H.J. Buschow, (1983). “New class of materials: half-metallic ferromagnets,” Physical review letters, 50(25), 2024-2027 (2024). https://doi.org/10.1103/PhysRevLett.50.2024

P.J. Brown, K.U. Neumann, P.J. Webster, and K.R.A. Ziebeck, “The magnetization distributions in some Heusler alloys proposed as half-metallic ferromagnets,” J. Phys.Condens. Matter, 12, 1827 (2000). https://doi.org/10.1088/0953-8984/12/8/325

T. Graf, C. Felser, and S.S. Parkin, “Simple rules for the understanging of Heusler compounds,” Prog. Solid State Ch. 39, 1-50 (2011). https://doi.org/10.1016/j.progsolidstchem.2011.02.001

C. Felser, I. Wollmann, S. Chadov, G.H. Fecher, and S.S. Parkin, “Basics and perspective of magnetic Heusler compounds,” APL Mater. 3, 041518 (2015). https://doi.org/10.1063/1.4917387

J.M.D. Coey, M. Venkatesan, and M.A. Bari, “Half-Metallic Ferromagnets,” in: High Magnetic Fields. Lecture Notes in Physics, vol. 595, edited by C. Berthier, L.P. Lévy, and G. Martinez, (Springer-Verlag, NY, 2002), pp. 377–396. https://doi.org/10.1007/3-540-45649-X_15

I. Zutic, J. Fabian, and S.D. Sharma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys. 76, 323 (2004). https://doi.org/10.1103/RevModPhys.76.323

Galanakis, Ph. Mavropoulos, and P.H. Dederichs, “Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles,” J. Phys. D: Appl. Phys. 39, 765 (2006). https://doi.org/10.1088/0022-3727/39/5/S01

H. Kurt, K. Rode, M. Venkatesan, P. Stamenov, and J.M.D. Coey, “High spin polarization in epitaxial films of ferrimagnetic Mn3Ga,” Phys. Rev. B, 83, 020405(R) (2011). https://doi.org/10.1103/PhysRevB.83.020405; “Mn3−xGa (0 ≤ x ≤ 1): Multifunctional thin film materials for spintronics and magnetic recording,” Phys. Status Solidi B, 248, 2338 (2011). https://doi.org/10.1002/pssb.201147122

Y. Miura, K. Nagao, and M. Shirai, “Atomic disorder effects on half-metallicity of the full-Heusler alloys Co2(Cr1−xFex)Al: A first-principles study,” Phys. Rev. B, 69, 144413 (2004). https://doi.org/10.1103/PhysRevB.69.144413

H.C. Kandpal, V. Ksenofontov, M. Wojcik, R. Seshadri, and C. Felser, “Electronic structure, magnetism and disorder in the Heusler compound Co2TiSn,” J. Phys. D: Appl. Phys. 40, 1587 (2007). https://doi.org/10.1088/0022-3727/40/6/S13

X. Dai, G. Liu, G.H. Fecher, C. Felser, Y. Li, and H. Liu, “New quaternary half metallic material CoFeMnSi,” J. Appl. Phys. 105, 07E901 (2009). https://doi.org/10.1063/1.3062812

G.Z. Xu, E.K. Liu, Y. Du, G.J. Li, G.D. Liu, W.H. Wang, and G.H. Wu, “A new spin gapless semiconductors family: Quaternary Heusler compounds,” EPL, 102, 17007 (2013). https://doi.org/10.1209/0295-5075/102/17007

J. Drews, U. Eberz, and H. Schuster, “Optische Untersuchungen an farbigen Intermetallischen Phasen,” J. Less-Common Met. 116, 271 (1986). https://doi.org/10.1016/0022-5088(86)90235-3

Z. Charifi, T. Ghellab, H. Baaziz, and F. Soyalp, “Characterization of quaternary Heusler alloys CoFeYGe (Y= Ti, Cr) with respect to structural, electronic, magnetic, mechanical, and thermoelectric features,” International Journal of Energy Research, 46(10), 13855-13873 (2022). https://doi.org/10.1002/er.8104

Q. Gao, L. Li, G. Lei, J.B. Deng, and X.R. Hu, “A first-principle study on the properties of a new series of quaternary Heusler alloys CoFeScZ (Z= P, As, Sb),” Journal of Magnetism and Magnetic Materials, 379, 288-293 (2015). https://doi.org/10.1016/j.jmmm.2014.12.025

M.I. Khan, H. Arshad, M. Rizwan, S.S.A. Gillani, M. Zafar, S. Ahmed, and M. Shakil, “Investigation of structural, electronic, magnetic and mechanical properties of a new series of equiatomic quaternary Heusler alloys CoYCrZ (Z= Si, Ge, Ga, Al): A DFT study,” Journal of Alloys and Compounds, 819, 152964 (2020). https://doi.org/10.1016/j.jallcom.2019.152964

F. Faid, H. Mebarki, K. Mokadem, F.M. Abdalilah, A. Benmakhlouf, M. Khatiri, and T. Helaimia, “Systematic study of structural, elastic, electronic, Magnetism and Half-metallic properties for the quaternary alloys: Heusler type VZrReZ (Z= Si, Ge and Sn),” Journal of Magnetism and Magnetic Materials, 172345 (2024). https://doi.org/10.1016/j.jmmm.2024.172345

K. Özdoğan, E. Şaşıoğlu, and I. Galanakis, “Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin-gapless and magnetic semiconductors,” Journal of Applied Physics, 113(19), 193903 (2013). https://doi.org/10.1063/1.4805063

A. Bouabça, H. Rozale, A. Amar, X.T. Wang, A. Sayade, and A. Chahed, “First-principles study of new series of quaternary Heusler alloys CsSrCZ (Z=Si, Ge, Sn, P, As, and Sb),” J. Magn. Magn. Mater. 419, 210-217 (2016). https://doi.org/10.1016/j.jmmm.2016.06.018

J. Du, S. Dong, Y.L. Lua, H. Zhao, L.F. Feng, and L.Y. Wang, “Half-metallic ferromagnetic features in d0 quaternary-Heusler compounds KCaCF and KCaCCl: A first-principles description,” J. Magn. Magn. Mater, 428, 250-254 (2017). https://doi.org/10.1016/j.jmmm.2016.12.038

J. Du, S. Dong, X.T. Wang, H. Rozale, H. Zhao, L.Y. Wang, and L.F. Feng, “Half-metallic ferromagnetism in KCaNX (X = O, S, and Se) quaternary Heusler compounds: A first-principles study,” Superlattices Microstruct, 105, 39-47 (2017). https://doi.org/10.1016/j.spmi.2016.12.055

S. Rezaei, and F. Ahmadian, “First-principles study of half-metallic properties in RbCaNZ (Z = O, S, and Se) quaternary Heusler compounds,” J. Magn. Magn. Mater, 456, 78-86 (2018). https://doi.org/10.1016/j.jmmm.2018.02.006

A. Taleb, A. Chahed, M. Boukli, H. Rozale, B. Amrani, M. Rahmoune, and A. Sayede, “Structural, magneto-electronic and thermophysical properties of the new d0 quaternary heusler compounds KSrCZ (Z= P, As, Sb),” Revista mexicana de física, 66(3), 265-272 (2020). https://doi.org/10.31349/RevMexFis.66.265

S. Gheriballah, B. Bouabdellah, A. Oughilas, M.A. Boukli, M. Rahmoune, and A. Sayede, “Investigating structure, magneto-electronic, and thermoelectric properties of the new d0 quaternary Heusler compounds RbCaCZ (Z= P, As, Sb) from first principle calculations,” Indian Journal of Pure & Applied Physics, 58, 818-824 (2020). https://doi.org/10.56042/ijpap.v58i11.32390

P. Hohenberg, and W.J.P.R. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev. B, 136, B864-B871 (1964). http://dx.doi.org/10.1103/PhysRev.136.B864

J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B, 46, 6671 (1992). https://doi.org/10.1103/PhysRevB.46.6671

P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, et al., “WIEN2k. An augmented plane wave+ local orbitals program for calculating crystal properties,” 60, 155 (2001).

J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical review letters, 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

J.P. Perdew, and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B, 45, 13244 (1992). https://doi.org/10.1103/PhysRevB.45.13244

F. Tran, P. Blaha, and K. Schwarz, “Band gap calculations with Becke–Johnson exchange potential,” Journal of Physics: Condensed Matter, 19, 196208 (2007). https://doi.org/10.1088/0953-8984/19/19/196208

D. Koller, F. Tran, and P. Blaha, “Improving the modified Becke-Johnson exchange potential,” Physical Review B, 85(15), 155109 (2012). https://doi.org/10.1103/PhysRevB.85.155109

G.K.H. Madsen, and D.J. Singh, “BoltzTraP.A code for calculating band-structure dependent quantities,” Computer Physics Communications, 175(1), 67-71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

F.D. Murnaghan, “The Compressibility of Media under Extreme Pressures,” Proc. Natl. Acad. Sci. USA, 30, 244-247 (1944). https://doi.org/10.1073/pnas.30.9.244

E. Şaşioglu, L.M. Sandratskii, and P. Bruno, “First-principles study of exchange interactions and Curie temperatures of half-metallic ferrimagnetic full Heusler alloys Mn2V Z (Z = Al, Ge),” J. Phys.: Condens. Matter, 17, 995 (2005). https://doi.org/10.1088/0953-8984/17/6/017

T. Takeuchi, “Conditions of Electronic Structure to Obtain Large Dimensionless Figure of Merit for Developing Practical Thermoelectric Materials,” Mater. Trans. 50, 2359-2365 (2009). https://doi.org/10.2320/matertrans.M2009143

Published
2025-09-08
Cited
How to Cite
Bahnes, K., Rezini, S., Abbad, A., Benstaali, W., Saidi, N., & Belarbi, O. (2025). Magnetic and Thermoelectric properties of RbCaYF(Y= C and N) Heusler alloys: Promising Candidates for Embedded Systems in Telecommunications. East European Journal of Physics, (3), 365-374. https://doi.org/10.26565/2312-4334-2025-3-37