Slow Surface Electromagnetic Waves on a mu-Negative Cylinder

Keywords: Metamaterial, Negative permeability, Cylinder, Surface electromagnetic wave

Abstract

This paper presents the theoretical study of metamaterials with negative magnetic permeability. The electrodynamics phenomenological description has been chosen. The dispersion properties of slow surface electromagnetic waves propagating along a circular cylinder made of mu-negative metamaterial are studied. We neglect energy losses in the metamaterial. Negativity of permeability occurs in relatively bounded frequency intervals, and for all modes, a normal dispersion occurs, regardless of parameter values. The values of phase velocities of these waves lie between c and 0.3c. The phase velocity dependencies of the studied modes versus their frequency have a diverse appearance. The directions of group and phase velocities coincide. The values of group velocity are less than 0.002c. The wave fields are the superposition of transverse-electric and transverse-magnetic parts and decay exponentially in a radial direction away from the separating boundary. The wave fields penetrate mu- negative metamaterial much weaker than into a vacuum. Wave propagation in the structure does not require an external magnetic field. The variety of these wave features on the cylinder parameters can be used for different applications.

Downloads

References

N. Engheta, and R.W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, (Wiley and IEEE Press, 2006).

T. Cui, S. Zhang, A. Al`u, et al., ”Roadmap on electromagnetic metamaterials and metasurfaces,” Journal of Physics: Photonics, 6, 032502 (2024). https://dx.doi.org/10.1088/2515-7647/ad1a3b

I. Shadrivov, M. Lapine, and Y. Kivshar, Nonlinear, tunable and active metamaterial, (Springer, 2015). https://link.springer.com/book/10.1007/978-3-319-08386-5

J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, ”Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084 (1999). https://doi.org/10.1109/22.798002

V. Galaydych, and M. Azarenkov, Applied Physics B, ”Slow surface electromagnetic waves on a mu-negative medium,” 128(7), 132 (2022). https://doi.org/10.1007/s00340-022-07854-3

V. Galaydych, and M. Azarenkov, ”Surface polaritons in a vacuum gap inside mu-negative medium,” Applied Physics A: Materials Science and Processing, 129(7), 466 (2023). https://doi.org/10.1007/s00339-023-06751-6

J.A. Stratton, Electromagnetic Theory, (John Wiley & Sons, LTD, 2007).

J. Ashley, and L. Emerson, ”Dispersion relations for non-radiative surface plasmons on cylinders,” Surface Science, 41(2), 615-618 (1974). https://doi.org/10.1016/0039-6028(74)90080-6

K. Galaidych, P. Markov, and G.Sotnikov, ”Amplification of the Multifrequency Signal in the Coaxial Slow-Wave Structure,” Telecommunications and Radio Engineering, 67(2), 177-189 (2008). https://doi.org/10.1615/TelecomRadEng.v67.i2.70

K.E. Zayed, ”Surface wave-beam interaction in cylindrical geometry,” Physica, 58(2), 177 (1972). https://doi.org/10.1016/0031-8914(72)90285-6

A. Zayats, I. Smolyaninov, and A. Maradudin, ”Nano-optics of surface plasmon polaritons,” Physics Reports, 408, 131-314 (2005). http://dx.doi.org/10.1016/j.physrep.2004.11.001

F. Zhang, W. Wang, and Z. Zhang, ”Simulation Study of a High-Order Mode BWO with Multiple Inclined Rectangular Electron Beams,” Progress In Electromagnetics Research C, 110, 213-227 (2021). http://dx.doi.org/10.2528/PIERC21010401

Published
2025-03-03
Cited
How to Cite
Galaydych, V., & Azarenkov, M. (2025). Slow Surface Electromagnetic Waves on a mu-Negative Cylinder. East European Journal of Physics, (1), 383-387. https://doi.org/10.26565/2312-4334-2025-1-47