Interaction Between a Spherical Particle and Atmospheric Pressure Currentless Argon Plasma

  • Shiyi Gao China-Ukraine Institute of Welding Guangdong Academy of Sciences, Guangdong Provincial Key Laboratory of Advanced Welding Technology, Tianhe, Guangzhou, China https://orcid.org/0009-0002-7627-3040
  • Andrii Momot E.O. Paton Electric Welding Institute NAS of Ukraine, Kyiv, Ukraine; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine https://orcid.org/0000-0001-8162-0161
  • Igor Krivtsun E.O. Paton Electric Welding Institute NAS of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0001-9818-3383
  • Danylo Antoniv E.O. Paton Electric Welding Institute NAS of Ukraine, Kyiv, Ukraine; Taras Shevchenko National University of Kyiv, Kyiv, Ukraine https://orcid.org/0009-0009-4970-3616
  • Oksana Momot Taras Shevchenko National University of Kyiv, Kyiv, Ukraine https://orcid.org/0009-0003-8528-8938
Keywords: Atmospheric pressure argon plasma, Currentless argon plasma, Plasma numerical modeling, Spherical particle in plasma, Plasma-particle interaction

Abstract

The interaction between a spherical particle of radius 10−5 − 10−3 m and atmospheric pressure currentless argon plasma was studied numerically within the hydrodynamic approach. The nonlinear problem was solved taking into account the temperature dependencies of transport and kinetic coefficients. A two-temperature model, which considers plasma thermal and ionization non-equilibrium near the particle, was used. The boundary condition for electron heat flux on the outer boundary of the space charge sheath is discussed in detail. The spatial distributions of plasma characteristics, such as temperature and number density, near the particle were determined and analyzed. The heat flux from plasma to the particle was calculated over a wide temperature range of singly ionized argon plasma. 

Downloads

References

P.K. Shukla, and A.A. Mamun, Introduction to Dusty Plasma Physics, (CRC Press, Boca Raton, 2015). https://doi.org/10.1201/9781420034103

A. Melzer, Physics of Dusty Plasmas, (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-20260-6

J. Beckers, J. Berndt , D. Block, et. al., Phys. Plasmas, 30, 120601 (2023). https://doi.org/10.1063/5.0168088

M. Lampe, G. Joyce, G. Ganguli, and V. Gavrishchaka, Phys. Plasmas, 7, 3851 (2000). https://doi.org/10.1063/1.1288910

O. Bystrenko, and A. Zagorodny, Phys. Rev. E, 67, 066403 (2003). https://doi.org/10.1103/PhysRevE.67.066403

A.I. Momot, and A.G. Zagorodny, Europhys. Lett. 114, 65004 (2016). https://doi.org/10.1209/0295-5075/114/65004

I.B. Denysenko, M. Mikikian, and N.A. Azarenkov, Phys. Plasmas, 29, 093702 (2022). https://doi.org/10.1063/5.0100913

A.A. Mamun, and P.K. Shukla, J. Plasma Phys. 77, 437 (2011). https://doi.org/10.1017/S0022377810000589

F. Verheest, Waves in dusty space plasmas, (Springer, Cham, 2012). https://doi.org/10.1007/978-94-010-9945-5

D.N. Gao, H. Zhang, J. Zhang, Z.Z. Li, and W.S. Duan, Phys. Plasmas, 24, 043703 (2017). https://doi.org/10.1063/1.4979354

A.I. Momot, A.G. Zagorodny, and O.V. Momot, Phys. Plasmas, 25, 073706 (2018). https://doi.org/10.1063/1.5042161

A.B. Murphy, and D. Uhrlandt, Plasma Sources Sci. Technol. 27(6), 063001 (2018). https://doi.org/10.1088/1361-6595/aabdce

M.I. Boulos, P.L. Fauchais, and E. Pfender, Handbook of Thermal Plasmas, (Springer, Cham, 2023). https://doi.org/10.1007/978-3-030-84936-8

A.Vardelle, C. Moreau, and J. Akedo, et al., J. Therm. Spray Technol. 25, 1376 (2016). https://doi.org/10.1007/s11666-016-0473-x

M.I. Boulos, P.L. Fauchais, and J.V. Heberlein, Thermal Spray Fundamentals: From Powder to Part, (Springer, Cham, 2021). https://doi.org/10.1007/978-3-030-70672-2

L. Latka and P. Biskup, Adv. Mater. Sci. 20, 39 (2020). https://doi.org/10.2478/adms-2020-0009

Z. Zhang, C. Wang, Q. Sun, S. Zhu, and W. Xia, Plasma Chem. Plasma Process, 42, 939 (2022). https://doi.org/10.1007/s11090-022-10250-6

D. Strogonov, V. Korzhyk, Y. Jianglong, A.Y. Tunik, O. Burlachenko, and A. Alyoshyn, The Paton Welding J. (9), 51 (2022). https://doi.org/10.37434/tpwj2022.09

T. Lienert, T. Siewert, S. Babu, and V. Acoff, Welding Fundamentals and Processes, (ASM International, Ohio 2011). https://doi.org/10.31399/asm.hb.v06a.9781627081740

E. Leveroni, and E. Pfender, Int. J. Heat Mass Transfer, 33, 1497 (1990). https://doi.org/10.1016/0017-9310(90)90046-W

V. Nemchinsky, J. Phys. D, 43, 215201 (2010). https://doi.org/10.1088/0022-3727/43/21/215201

I.V. Krivtsun, A.I. Momot, D.V. Antoniv, and B. Qin, Phys. Plasmas, 30, 043513 (2023). https://doi.org/10.1063/5.0141015

I.V. Krivtsun, A.I. Momot, D.V. Antoniv, and B. Qin, in: Welding and Related Technologies, edited by I.V. Krivtsun, et. al., (CRC Press, London, 2025), pp. 129-135. https://doi.org/10.1201/9781003518518-27

I.V. Krivtsun, A.I. Momot, D.V. Antoniv, and S. Gao, Plasma Chem. Plasma Proc. 45, (2025). https://doi.org/10.1007/s11090-025-10554-3

V.M. Zhdanov, Transport Processes in Multicomponent Plasma, (CRC Press, 2002).

N.A. Almeida, M.S. Benilov, and G.V. Naidis, J. Phys. D, 41, 245201 (2008). https://doi.org/10.1088/0022-3727/41/24/245201

I.V. Krivtsun, A.I. Momot, I.B. Denysenko, O. Mokrov, R. Sharma, and U. Reisgen, Phys. Plasmas, 31, 083505 (2024). https://doi.org/10.1063/5.0216753

Published
2025-03-03
Cited
How to Cite
Gao, S., Momot, A., Krivtsun, I., Antoniv, D., & Momot, O. (2025). Interaction Between a Spherical Particle and Atmospheric Pressure Currentless Argon Plasma. East European Journal of Physics, (1), 388-395. https://doi.org/10.26565/2312-4334-2025-1-48