Energy of Crystal Lattice Thermal Oscillations in TlGaS2 Semiconductor Compound

Keywords: Semiconductor, Thermal expansion, Thermal oscillation, Crystal lattice, Debye temperature, Young's modulus, Anharmonicity

Abstract

This article presents the results of a study of the temperature dependences of the coefficients of thermal expansion and isothermal compressibility of the ternary compound TlGaS2. In the studied temperature range (80-400 K), no anomalies were found in the temperature dependences of these properties. The thermal expansion coefficient of the TlGaS2 semiconductor compound is calculated based on empirical formulas including Debye temperature and Debye functions, and the average energy of the crystal lattice is calculated and its temperature dependence is tabulated. It was shown that the energy of the crystal lattice depends on the degree of anharmonicity of the oscillations.

Downloads

Download data is not yet available.

References

M. Isik, A. Karatay, and N.M. Gasanly, “Structural and optical characteristics of thermally evaporated TlGaSe2 thin films,” Optical Materials, 124, 112018 (2022). https://doi.org/10.1016/j.optmat.2022.112018

W. Henkel, H.D. Hochheimer, C. Carlone, A. Werner, S. Ves, and H.G. Schnering, “High-pressure Raman study of the ternary chalcogenides TlGaS2, TlGaSe2, TlInS2 and TlInSe2,” Phys. Rev. B, 26(6), 3211–3221 (1982). https://doi.org/10.1103/PhysRevB.26.3211

G.E. Delgadoa, A.J. Mora, F.V. Perez, and J. Gonzalez, “Crystal structure of the ternary semiconductor compound thallium gallium sulfide, TlGaS2,” Physica B: Condens. Matter. 391(2), 385–388 (2007). https://doi.org/10.1016/j.physb.2006.10.030

D.I.Huseynov, M.I.Murguzov, Sh.S.Ismailov Thermal conductivity of ErxSn1-xSe (x ≤ 0.025) solid solutions,” Inorganic Materials, 44, 467–469 (2008). https://doi.org/10.1134/S0020168508050063

X. Xin, F. Liu, X.-Q. Yan, W. Hui, X. Zhao, X. Gao, Z.-B. Liu, and J.-G.Tian, “Two-photon absorption and non-resonant electronic nonlinearities of layered semiconductor TlGaS2,” Opt Express, 26(26), 33895 33905 (2018). https://doi.org/10.1364/OE.26.033895

Y. Fu, D. He, J. He, X. Han, J. Bai, Y. Wang, and H. Zhao, “Photocarrier dynamics in TlGaS2 nanoflakes and van der waals heterostructures with hexagonal boron nitride and WS2 nanoflakes: implications for optoelectronic applications,” ACS Applied Nano Materials, 3, 8702–8707 (2020). https://doi.org/10.1021/acsanm.0c01448

B.A. Ünlü, A. Karatay, E.A. Yildiz, T. Dinçbay, H. Ünver, N. Gasanly, and A. Elmali, “Defect assisted nonlinear absorption and optical limiting in amorphous 〖TlGaS〗_(2(1-x)) 〖Se〗_2x (0≤x≤1)thin films,” Journal of Luminescence, 241, 118540 (2022). https://doi.org/10.1016/j.jlumin.2021.118540

S.Delice, M.Isik, N.M. asanly, Thermoluminescence properties and trapping parameters of TlGaS 2 single crystals // Journal of Luminesce, 2022, 244, 118714, https://doi.org/10.1016/j.jlumin.2021.118714

A. Say, D. Adamenko, O. Gomonnai, I. Roman, I. Martynyuk-Lototska, and R. Vlokh, “Anisotropy of thermal expansion of TlGaSe_2 crystals,” Phase Transitions, 92(9), 824-830 (2019). https://doi.org/10.1080/01411594.2019.1642475

I. Martynyuk-Lototska, O. Mys, A. Say, et al., “Anisotropy of acoustic and thermal expansion properties of TlInSe2 crystals,” Phase Transitions, 92(1), 23–35 (2019). https://doi.org/10.1080/01411594.2018.1545227

B. Gurkan, and S. Berber, “Structural and electronic properties of layered semiconductor chalcogenide crystals: TIGaSe2, TIGaS2 and TIInS2,” J. Indian Chem. Soc. 96, 1123-1130 (2019). https://doi.org/10.5281/zenodo.5643212

M. Isik, A. Karatay, A.N. Ech-Chergui, and N.M. Gasanly, “Study of the structural and optical properties of thallium gallium disulfide (TlGaS2) thin films grown via thermal evaporation,” Physica Scripta, 97(7), 075808 (2022). https://doi.org/10.1088/1402-4896/ac74f0

Z. Cicek, S. Yakut, D. Deger, D. Bozoglu, S. Mustafaeva, P. Ismailova, A.A. Hasanov, and K. Ulutas, “Thickness dependence of dielectric properties of〖TlGaS〗_2 thin films,” Materials Science in Semiconductor Processing, 166, 107733 (2023). https://doi.org/10.1016/j.mssp.2023.107733

Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, Thermal Expansion: Nonmetallic Solids (Thermophysical properties of matter, vol. 13, (IFI/Plenum, New York, 1977).

M.S. Barabashko, A.I. Krivchikov, R. Basnukaeva, O.A. Korolyuk, and A. Jeżowsk, “Proportional correlation between heat capacity and thermal expansion of atomic, molecular crystals and carbon nanostructures,” Condensed Matter Physics, 26(3), 33602 (2023). https://doi.org/10.5488/CMP.26.33602

C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley & Sons: New York, USA, 2005).

B.M. Askerov, and S.R. Figarova, Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases, (Springer-Verlag, Berlin, Heidelberg, 2010).

M.T. Cao-Rial, C. Moreno, and P. Quintela, “Determination of Young modulus by using Rayleigh waves,” Applied Mathematical Modelling, 77, Part 1, 439-455 (2020). https://doi.org/10.1016/j.apm.2019.07.051

O.L. Anderson, “A simplified method for calculating the Debye temperature from elastic constants,” Journal of Physics and Chemistry of Solids, 24(7), 909-917 (1963). https://doi.org/10.1016/0022-3697(63)90067-2

D.C. Wallace, Thermodynamics of crystals, (Dover Publications, Wiley, New York, 1998).

O. Madelung, Introduction to Solid-State Theory, (Springer Science & Business Media, 1996).

Published
2024-12-08
Cited
How to Cite
GuseinovaK. М., Mammadov, F. A., Hadiyeva, A. A., Eminova, V. I., & Huseynov, C. I. (2024). Energy of Crystal Lattice Thermal Oscillations in TlGaS2 Semiconductor Compound. East European Journal of Physics, (4), 322-328. https://doi.org/10.26565/2312-4334-2024-4-36