Bianchi Type VI0 Generalized Ghost Pilgrims Dark Energy Cosmological Model in Saez-Ballester Theory of Gravitation

  • Tenneti Ramprasad Department of Mathematics, Vasavi College of Engineering(A), Hyderabad, India https://orcid.org/0000-0002-5599-1118
  • M.P.V.V. Bhaskara Rao Department of Basic Sciences and Humanities, Vignan’s Institute of Information Technology (A), Vishakhapatnam, Andhra Pradesh, India https://orcid.org/0000-0001-6347-4156
  • M. Kiran Department of Mathematics, MVGR College of Engineering, Vizianagaram(A), India
  • Satyanarayana Bora College of Computing and Information Sciences, University of Technology and Applied Sciences, Musandam, Khasab, Oman https://orcid.org/0000-0001-7019-4873
Keywords: Hubble parameter, EOS parameter, deceleration parameter, GGPDE, SBTG

Abstract

The Generalized Ghost Pilgrim Dark Energy (GGPDE) in the Saez-Ballester Theory of Gravitation (SBTG) and the Bianchi type VI0 space-time framework serve as the foundation for this work. We used Mishra and Dua's [Astrophys. Space Sci. 366, 6 (2021)] straightforward parameterization of average scale factor a(t) = exp{(αt+β)p} to find precise solutions to the field equations. We have looked into the GGPDE and dark matter (DM), both when they interact and when they don't. For both models, some significant and well-known parameters are produced, including the Hubble parameter, the equation of state (EOS) parameter, the deceleration parameter, etc. It is discovered that for both models, the deceleration parameter denotes an accelerated phase and the EOS parameter a cosmological constant. For both the non-interacting and interacting models, the stability analysis and energy conditions are examined.

Downloads

References

R.K. Mishra, and H. Dua, “Evolution of FLRW universe in Brans-Dicke gravity theory,” Astrophys. Space Sci. 366, 6 (2021). https://doi.org/10.1007/s10509-020-03908-0

A.G. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116, 1009–1038 (1998). https://doi.org/10.1086/300499

D.N. Spergel, et al., “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters,” Astrophys. J. Suppl. Ser. 148, 175–194 (2003). https://doi.org/10.1086/377226

M. Tegmark, et al., “Cosmological parameters from SDSS and WMAP,” Phys. Rev. D, 69, 10350 (2004); S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys. 61, 103501 (1989). https://doi.org/10.1103/PhysRevD.69.103501

S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys. 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1

P. Steinhardt, L. Wang, and I. Zlatev, “Cosmological tracking solutions,” Phys. Rev. D, 59, 123504 (1999). https://doi.org/10.1103/PhysRevD.59.123504

R.R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state,” Phys. Lett. B, 545, 23-29 (2002). https://doi.org/10.1016/S0370-2693(02)02589-3

S. Noijiri, S.D. Odintsov, and S. Tsujikawa, “Properties of singularities in the (phantom) dark energy universe,” Phys. Rev. D, 71, 063004 (2005). https://doi.org/10.1103/PhysRevD.71.063004

T. Padmanabhan, “Accelerated expansion of the universe driven by tachyonic matter,” Phys. Rev. D, 66, 021301(R) (2002). https://doi.org/10.1103/PhysRevD.66.021301

M. Gasperini, F. Piazza, and G. Veneziano, “Quintessence as a runaway dilaton,” Phys. Rev. D, 65, 023508 (2001). https://doi.org/10.1103/PhysRevD.65.023508

F.R. Urban, and A.R. Zhitnitsky, “The cosmological constant from the QCD Veneziano ghost,” Phys. Lett. B, 688(1), 9–12 (2010). https://doi.org/10.1016/j.physletb.2010.03.080

N. Ohta, “Dark energy and QCD ghost,” Phys. Lett. B, 695, 41-44 (2011). https://doi.org/10.1016/j.physletb.2010.11.044

R.G. Cai, Z.L. Tuo, H.B. Zhang, and Q. Su, “Notes on ghost dark energy,” Phys. Rev. D, 84(12), 123501 (2011). https://doi.org/10.1103/PhysRevD.84.123501

A.R. Zhitnitsky, “Gauge fields and ghosts in Rindler space,” Phys. Rev. D, 82(10), 103520 (2010). https://doi.org/10.1103/PhysRevD.82.103520

B. Holdom, “From confinement to dark energy,” Phys. Lett. B, 697(4), 351–356 (2011). https://doi.org/10.1016/j.physletb.2011.02.024

A.R. Zhitnitsky, “Contact Term, its Holographic Description in QCD and Dark Energy,” arXiv:1112.3365[hep-ph], Phys. Rev. D, 86, 045026 (1988). https://doi.org/10.1103/PhysRevD.86.045026

M. Maggiore, L. Hollenstein, M. Jaccard, and E. Mitsou, “Early dark energy from zero-point quantum fluctuations,” Phys. Lett. B, 704(3), 102-107 (2011). https://doi.org/10.1016/j.physletb.2011.09.010

R.G. Cai, Z.L. Tuo, Y.B. Wu, and Y.Y. Zhao, “More on QCD Ghost Dark Energy,” arXiv:1201.2494v2[astro-ph.CO], Phys. Rev. D, 86, 023511 (2012). https://doi.org/10.1103/PhysRevD.86.023511

H. Wei, “Pilgrim Dark Energy,” arXiv: 1204.4032v3[gr-qc], Class. Quantum Grav. 29, 175008 (2012). https://doi.org/10.1088/0264-9381/29/17/175008

M. Sharif, and A. Jawad, “Analysis of generalized ghost version of pilgrim dark energy,” Astrophys. Space Sci. 351, 321-328 (2014). https://doi.org/10.1007/s10509-014-1833-y

M.V. Santhi, V.U.M. Rao, and Y. Aditya, “Anisotropic Generalized Ghost Pilgrim Dark Energy Model in General Relativity,” Int. J. Theor. Phys. 56, 362-371 (2017). https://doi.org/10.1007/s10773-016-3175-8

A. Jawad, “Analysis of Generalized Ghost Pilgrim Dark Energy in Non-flat FRW Universe,” arXiv: 1412.4000v1[gr-qc], Eur. Phys. J. C, 74, 3215 (2014). https://doi.org/10.1140/epjc/s10052-014-3215-6

P. Garg, A. Dixit, and A. Pradhan, “Cosmological models of generalized ghost pilgrim dark energy (GGPDE) in the gravitation theory of Saez-Ballester,” arXiv: 2004.11153v1[physics. gen-ph], International Journal of Geometric Methods in Modern Physics, 18(14), 2150221 (2020). https://doi.org/10.1142/S0219887821502212

R. Bali, and P. Kumari, “Bianchi Type VI0 inflationary universe with constant declaration parameter and flat potential in General Relativity,” Advances in Astrophysics, 2(2), 67-72 (2017). https://dx.doi.org/10.22606/adap.2017.22001

G.G. Luciano, “Saez–Ballester gravity in Kantowski–Sachs Universe: A new reconstruction paradigm for Barrow Holographic Dark Energy,” Physics of the Dark Universe, 41, 101237 (2023). https://doi.org/10.1016/j.dark.2023.101237

T. Vinutha, and K.V. Vasavi, “The study of accelerating DE models in Saez–Ballester theory of gravitation,” Eur. Phys. J. Plus, 137, 1294 (2022). https://doi.org/10.1140/epjp/s13360-022-03477-x

H. Wei, and R.G. Cai, “Interacting agegraphic dark energy,” Eur. Phys. J. C, 59, 99-105 (2009). https://doi.org/10.1140/epjc/s10052-008-0799-8

K.S. Adhav, “LRS Bianchi Type-I universe with anisotropic dark energy in lyra geometry,” Int. J. Astron. Astrophys. 1(4), 204 209 (2011). http://dx.doi.org/10.4236/ijaa.2011.14026

Y.S. Myung, “Instability of holographic dark energy models. Phys. Lett. B, 652, 223-227 (2007). https://doi.org/10.1016/j.physletb.2007.07.033

Published
2025-03-03
Cited
How to Cite
Ramprasad, T., Rao, M. B., Kiran, M., & Bora, S. (2025). Bianchi Type VI0 Generalized Ghost Pilgrims Dark Energy Cosmological Model in Saez-Ballester Theory of Gravitation. East European Journal of Physics, (1), 59-69. https://doi.org/10.26565/2312-4334-2025-1-05