The Influence of Fractional Derivatives on Thermodynamic Properties by Studying the CPSEHP Interaction

  • M. Abu-shady Faculty of Science, Department of Mathematics and Computer Science, Menoufia University, Shebin Elkom, Egypt https://orcid.org/0000-0001-7077-7884
  • Sh. Y. Ezz-Alarab Faculty of Science, Department of Mathematics and Computer Science, Menoufia University, Shebin Elkom, Egypt
Keywords: Schrödinger equation, Parametric Nikiforov-Uvarov method, Thermodynamic properties, Superstatics, Generalized fractional derivative

Abstract

The parametric Nikiforov-Uvarov (N-U) method is employed in conjunction with a generalized fractional derivative (GFD) to investigate the energy eigenvalues and the total normalized wave function associated with the Coulomb plus screened exponential hyperbolic potential (CPSEHP) in terms of Jacobi polynomials. This potential exhibit maximum effectiveness at lower values of the screening parameter. To explore the thermal and superstatistical characteristics, the derived energy eigenvalues are directly incorporated into the partition function (Z) and subsequently used to determine other thermodynamic quantities, including vibrational mean energy (U), specific heat capacity (C), entropy (S), and free energy (F). Comparisons with previous studies are conducted. The classical case is recovered from the fractional case by setting α = β = 1, consistent with prior work. Our results demonstrate that the fractional parameter plays a crucial role in governing the thermal and superstatistical properties within the framework of this model.

Downloads

Download data is not yet available.

References

M. Dalir, and M. Bashour, Appl. Math. Sci. 4, 1021 (2010).

M. Abu-Shady, Int. J. Mod. Phys. A, 34(31), 1950201 (2019). https://doi.org/10.1142/S0217751X19502014

N. Jamshir, B. Lari, and H. Hassanabadi, Stat. Mech. Appl. Phys. A, 565, 125616 (2021). https://doi.org/10.1016/j.physa.2020.125616

M. Abu-Shady, and Sh.Y. Ezz-Alarab, Few-Body. Syst. 62, 13 (2021). https://doi.org/10.1007/s00601-021-01591-7

M. Abu-Shady, A.I. Ahmadov, H.M. Fath-Allah, and V.H. Badalov, J. Theor. Appl. Phys. 16, 3 (2022). https://doi.org/10.30495/jtap.162225

A. Al-Jamel, Int. J. Mod. Phys. A, 34, 1950054 (2019). https://doi.org/10.1142/S0217751X19500544

M.M. Hammad, A.S. Yaqut, M.A. Abdel-Khalek, and S.B. Doma, Nuc. Phys. A, 1015, 122307 (2021). https://doi.org/10.1016/j.nuclphysa.2021.122307

G. Wang, and A.M. Wazwaz, Chaos. Solit. Fract. 155, 111694 (2022). https://doi.org/10.1016/J.CHAOS.2021.111694

M. Abu-Shady, and M.K.A. Kaabar, Math. Prob. Eng. 2021, 9444803 (2021). https://doi.org/10.1155/2021/9444803

M. Abu-Shady, and E. M. Khokha, Advances in High Energy Physics. 2018, 7032041 (2018). https://doi.org/10.1155/2018/7032041

M. Abu-Shady, and H. M. Fath-Allah, Int. J. Mod. Phys. A, 35, 2050110 (2020). https://doi.org/10.1142/S0217751X20501109

M. Abu-Shady, and A. N. Ikot, Eur, Phys. J. Plus. 135, 321 (2019). https://doi.org/10.1140/epjp/i2019-12685-y

M. Abu-Shady, E. M. Khokha, T. A. Abdel-Karim, European Physical Journal D, 76(9), 159 (2022). https://doi.org/10.1140/epjd/s10053-022-00480-w

H. Karayer, D. Demirhan, and F. Büyükkılıç, Comm. Theor. Phys. 66, 12 (2016). https://doi.org/10.1088/0253-6102/66/1/012

C. Tezcan, and R. Sever, Int. J. Theor. Phys. 48, 337 (2009). https://doi.org/10.1007/s10773-008-9806-y

A. Berkdemir, C. Berkdemir, and R. Sever, Modern Phys. Lett. A, 21, 2087 (2006). https://doi.org/10.1142/S0217732306019906

M. C. Zhang, G.H. Sun, SH. Dong, Phys. Lett A, 374, 704 (2010). https://doi.org/10.1016/j.physleta.2009.11.072

G. Chen, Zeitschrift für Naturforschung A, 59, 875 (2004). https://doi.org/10.1515/zna-2004-1124

S. M. Al-Jaber, Int. J. Theor. Phys. 47, 1853 (2008). https://doi.org/10.1007/s10773-007-9630-9

K. J. Oyewumi, F. O. Akinpelu, and A.D. Agboo, Int. J. Theor. Phys. A, 47, 1039 (2008). https://doi.org/10.1007/s10773-007-9532-x

S. Ikhdair, and R. Sever, J. Mole. Struc. 855, 13 (2008). https://doi.org/10.1016/j.theochem.2007.12.044

H. Hassanabadi, S. Zarrinkamar, and A.A. Rajabi, Comm. Theor. Phys. 55, 541 (2011). https://doi.org/10.1088/0253-6102/55/4/01

S. Ikhdair, and R. Sever, Int. J. Modern Phys. C, 19, 221 (2008). https://doi.org/10.1142/S0129183108012030

R. Kumar, and F. Chand, Commun. Theor. Phys. 59, 528 (2013). https://doi.org/10.1088/0253-6102/59/5/02

S.M. Kuchin, and N.V. Maksimenko, Univ. J. Phys. Appl. 7, 295 (2013). https://doi.org/10.13189/ujpa.2013.010310

M. Abu-Shady, H. Mansour, and A.I. Ahmadov, Advances in High Energy Physics, 2019, 4785615 (2019). https://doi.org/10.1155/2019/4785615

M. Abu-Shady and E. M. Khokha, International Journal of Modern Physics A, 36(29), 2150195 (2021). https://doi.org/10.1142/S0217751X21501955

M. Abu-Shady, T. A. Abdel-Karim, and E. M. Khokha, Advances in High Energy Physics, 2018, 356843 (2018). https://doi.org/10.1155/2018/7356843

A.N. Ikot, O.A. Awoga, and A.D. Antia, Chinese Phys. B, 22, 2 (2013). https://doi.org/10.1088/1674-1056/22/2/020304

D. Agboola, Phys. Scripta. 80, 065304 (2009). https://doi.org/10.1088/0031-8949/80/06/065304

H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar, and M. Solaimani, Int. J. Quant. Chem. 112, 3706 (2012). https://doi.org/10.1002/qua.24064

H. Hassanabadi, E. Maghsoodi, A. N. Ikot, and S. Zarrinkamar, Appl. Math. Comput. 219, 9388 (2013). https://doi.org/10.1016/j.amc.2013.03.011

Wahyulianti, A. Suparmi, C. Cari, and F. Anwar, J. Phys. Conf. Serie. 795, 012022 (2017). https://doi.org/10.1088/1742-6596/795/1/012022

S. Flugge, Practical Quantum Mechanics, (Springer-Verlag, 1974).

C. A. Onate, I. B. Okon, U.E. Vincent, E.S. Eyube, M.C. Onyeaju, E. Omugbe, and G.O. Egharevba, Sci. Rep. 12, 15188 (2022). https://doi.org/10.1038/s41598-022-19179-4

C.O. Edet, U.S. Okorie, G. Osobonge, A.N. Ikot, G.J. Rampho, and R. Sever, J. Math. Chem. 58, 989 (2020). https://doi.org/10.1007/s10910-020-01107-4

A.N. Ikot, E.O. Chukwuocha, M.C. Onyeaju, C.A. Onnle, B.I. Ita, and M.E. Udoh, Pramana – J. Phys. 90, 22 (2018). https://doi.org/10.1007/s12043-017-1510-0

C.A. Onate, Chinese J. Phys. 54, 165 (2016). https://doi.org/10.1016/j.cjph.2016.04.001

I.B. Okon, O.O. Popoola, E. Omugbe, A.D. Antia, C.N. Isonguyo, and E.E. Ituen, Comput. Theor. Chem. 1196, 11132 (2021). https://doi.org/10.1016/j.comptc.2020.113132

K.J. Oyewumi, B.J. Falaye, C.A. Onate, O.J. Oluwadare, and W.A. Yahya, Molec. Phys. 112, 127 (2014). https://doi.org/10.1080/00268976.2013.804960

A. Boumali, and H. Hassanabadi, Eur. Phys. J. Plus. 128, 124 (2013). https://doi.org/10.1140/epjp/i2013-13124-y

M. Abu-Shady, and H.M. Fath-Allah, East. Eur. J. Phys. (3), 248 (2023). https://doi.org/10.26565/2312-4334-2023-3-22

M. Rashdan, M. Abu-Shady, and T.S.T. Ali, Int. J. Mod. Phys. E, 15(1), 143 (2006). https://doi.org/10.1142/S0218301306003965

M. Abu-Shady, Int. J. Mod. Phys. E, 21, 1250061 (2012). https://doi.org/10.1142/S0218301312500619

M.M. Hammad, et al., Nucl. Phys. A, 1015, 122307 (2021). https://doi.org/10.1016/j.nuclphysa.2021.122307

A.F. Nikiforov, and V.B. Uvarov, Special Functions of Mathematical Physics, (Birkhuser, Basel), (1988).

I. Okon, C. Onate, E. Omugbe, U. Okorie, et. al., Advances in High Energy Physics, 2022, 5178247 (2022). https://doi.org/10.1155/2022/5178247

C. Beck, “Superstatistics: theory and applications,” Continuum. Mech. Thermodyn. 16, 293 (2004). https://doi.org/10.1007/s00161-003-0145-1

C. Beck, and E.G. Cohen, arXiv:cond-mat/0205097v2 14 Nov 2002.

C.O. Edet, P.O. Amadi, U.S. Okorie, A. Tas, A.N. Ikot, and G. Rampho, Revista Mexicana de Fısica. 66, 824 (2020). https://doi.org/10.31349/RevMexFis.66.824

I. Okon, C. Onate, E. Omugbe, et. al., Advances in High Energy Physics, 2022, 178247, (2022). https://doi.org/10.1155/2022/5178247

E.P. Inyang, F. Ayedun, E.A. Ibanga, M.K. Lawal, et. al., Result. Phys. 43, 106075 (2022). https://doi.org/10.1016/j.rinp.2022.106075

B.I. Okon, O. Popoola, E. Omugbe, D.A. Antia, et. al., Comput. Theor. Chem. 1196, 113112 (2021).

P.E. Inyang, P.E. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, Canad. J. Phys. 99, 982 (2021). https://doi.org/10.1139/cjp-2020-0578

M. Abu-Shady, and Sh.Y. Ezz-Alarab, India. J. Phys. 97, 3661 (2023). https://doi.org/10.1007/s12648-023-02695-y

V. Kumar, S.B. Bhardwa, R.M. Singh, and F. Chand, Pramana. J. Phys. 96, 125 (2022). https://doi.org/10.1007/s12043-022-02377-0

H. Hassanabadi, M. Hosseinpoura, Eur. Phys. J. C, 76, 553 (2016). https://doi.org/10.1140/epjc/s10052-016-4392-2

H.G. Mansour, and A. Gamal, Advances in High Energy Physics, 7, 7269657 (2018). https://doi.org/10.1155/2018/7269657

P.E. Inyang, O.E. Obisung, S.E. William, and B.I. Okon, East. Eur. J. Phys. (3), 104 (2022). https://doi.org/10.26565/2312-4334-2022-3-14

K.J. Oyewum, B.J. Falaye, C.A. Onate, O.J. Oluwadare, and W.A. Yahya, Molec. Phys. 112, 127 (2014). https://doi.org/10.1080/00268976.2013.804960

D. Ebert, R. N. Faustov, V.O. Galkin, Phys. Rev. D, 67, 014027, (2003). https://doi.org/10.1103/PhysRevD.67.014027

M. Abu-shady, and H.M. Fath-Allah, Advances in High Energy Physics, 2022, 4539308 (2022). https://doi.org/10.1155/2022/4539308

H. Hassanabadi, and M. Hosseinpour, Eur. Phys. J. C, 76, 553 (2016). https://doi.org/10.1140/epjc/s10052-016-4392-2

A.N. Ikot, U.S. Okorie, G. Osobonye, P.O. Amadi, C.O. Edet, et al., Heliyon. 6, e03738 (2020). https://doi.org/10.1016/j.heliyon.2020.e03738

H. Hassanabadi, M. Hosseinpoura, Eur. Phys. J. C, 76, 553 (2016). https://doi.org/10.1140/epjc/s10052-016-4392-2

Published
2025-06-09
Cited
How to Cite
Abu-shady, M., & Ezz-Alarab, S. Y. (2025). The Influence of Fractional Derivatives on Thermodynamic Properties by Studying the CPSEHP Interaction. East European Journal of Physics, (2), 131-143. https://doi.org/10.26565/2312-4334-2025-2-13