Modeling and Theoretical Study of p-n Heterojunctions Based on CdTe/Si: Band Alignment, Carrier Transport, and Temperature-Dependent Electrophysical Properties

  • Sadula O. Sadullaev Institute of Fundamental and Applied Research under TIIAME NRU, Tashkent, Uzbekistan; National Research University TIIAME, Department of Physics and Chemistry, Tashkent, Uzbekistan https://orcid.org/0000-0003-2444-4055
  • Ibrokhim B. Sapaev National Research University TIIAME, Department of Physics and Chemistry, Tashkent, Uzbekistan; Institute of Fundamental and Applied Research under TIIAME NRU, Tashkent, Uzbekistan https://orcid.org/0000-0003-2365-1554
  • Khidoyat E. Abdikarimov Department of interfaculty general technical sciences, Urgench State University, Urgench, Uzbekistan https://orcid.org/0009-0002-9994-5612
Keywords: Modeling, Built-in potential, Heterojunction, Band gap, Intrinsic concentration, Intrinsic electrical conductivity

Abstract

This paper presents a comprehensive theoretical study of p-n heterojunctions formed between cadmium telluride (CdTe) and silicon (Si) over the temperature range of 0 K to 800 K. We focus on band alignment, carrier transport mechanisms, and the temperature-dependent electrophysical properties of the heterojunctions. Through modeling approaches, we explore the energy band structure, intrinsic concentration, intrinsic electrical conductivity, and the impact of temperature variations on the heterojunction characteristics. Our findings provide insights into optimizing the performance of CdTe/Si heterojunctions for applications in photovoltaics and optoelectronics.

Downloads

References

R.A. Ismail, K.I. Hassan, et al., Mat. Sci. Sem. Processing, 10, 1 (2007). https://doi.org/10.1016/j.mssp.2006.12.001

M.H. Ehsan, H.R. Dizaji, and M.H. Mirhaj, Digest Journal of Nanomaterials and Biostructures, 7, 629 (2012).

W.A. Pinheiro, V.D. Falcão, L.R. de Oliveira Cruz, and C.L. Ferreira, Materials Research, 91, 47 (2006). https://doi.org/10.1590/S1516-14392006000100010

J.Sh. Abdullayev, and I.B. Sapaev, Eur. J. Phys. 3(49), 21 (2024). https://doi.org/10.31489/2024No3/21-28

J.Sh. Abdullayev, and I.B. Sapaev, East Eur. J. Phys. (3, (2024). https://doi.org/10.26565/2312-4334-2024-3-39

A. Cao, T. Tan, et. al., 545, 323 (2018). https://doi.org/10.1016/j.physb.2018.06.035

T.L. Chu, S.S. Chu, and S.T. Ang, J. Appl. Phys. 64, 1233 (1988). https://doi.org/10.1063/1.341840

Sh.B. Utamuratova, et. al., East Eur. J. Phys. (3), 385 (2023). https://doi.org/10.26565/2312-4334-2023-3-41

V.I. Chepurnov, et. al., Computational Nanotechnology, 8(3), 59 (2021). https://doi.org/10.33693/2313-223X-2021-8-3-59-68

F. Bouzid, E. Kayahan, M.A. Saeed, et al., Applied Physics A, 130, 222 (2024). https://doi.org/10.1007/s00339-024-07377-y

C.H. Su, J. Appl. Phys. 103, 084903 (2008), https://doi.org/10.1063/1.2899087

M.N. Harif, et. al., Crystals, 13(5), 848 (2023). https://doi.org/10.3390/cryst13050848

S.H. Zyoud, et. al., Crystals, 11, 1454 (2021). https://doi.org/10.20944/preprints202110.0346.v1

Mathematics for Semiconductor Heterostructures, Modeling, Analysis, and Numerics, International Workshop, (2012). www.wias-berlin.de/workshops/msh2012

E.A.B. Cole, Mathematical and Numerical Modelling of Heterostructure Semiconductor Devices: From Theory to Programming, (Springer-Verlag, London, 2009). https://doi.org/10.1007/978-1-84882-937-4

M.V. Dolgopolov, et al., Samara U., Nat. Sci. Series, 30, 64 (2024). http://dx.doi.org/10.18287/2541-7525-2024-30-1-64-81 (in Russian)

J. Chavez, X. Zhou, S. Almeida, R. Aguirre, et al., J. Mat. Sci. Research, 5(3), 1(2016). https://doi.org/10.5539/jmsr.v5n3p1

B.S. Chaudhari, M. Niraula, et. al., J. Electronic Materials, 52, 3431–3435 (2023). https://doi.org/10.1007/s11664-023-10318-9

M.A. Razooqia, et. al., Ad. Mat. Research, 702, 236 (2013). https://doi.org/10.4028/www.scientific.net/AMR.702.236

X. Li, J. Lu, et. al., Nuclear Science and Techniques, 31, 18 (2020). https://doi.org/10.1007/s41365-020-0723-y

S.R. Bera, and S. Saha, Appl. Nanosci. 6, 1037 (2016). https://doi.org/10.1007/s13204-015-0516-5

E. Napchan, “HETEROJUNCTIONS OF CdTe ON Si”, Imperial College of Science and Technology, (1987)

D.J. Smith, et al., Materials Science and Engineering B, 77, 93 (2000). https://doi.org/10.1016/S0921-5107(00)00480-3

W.F. Mohammad, Circuits and Systems, 3, (2012). http://doi.org/10.4236/cs.2012.31007

V. Mizeikis, K. Jarašiunas, et. al., J. Crystal Growth, 214/215, (2000). http://doi.org/10.1016/s0022-0248(00)00075-0

M.C. Putnam, et al., Energy & Environmental Science, 3(8), 1037 (2010). https://doi.org/10.1039/C0EE00014K

A.V. Sukach, V.V. Tetyorkin, and N.M. Krolevec, Semiconductor Physics, Quantum Electronics & Optoelectronics, 2, 13 (2010). http://journal-spqeo.org.ua/n2_2010/v13n2-2010-p221-225.pdf

S. Osono, Y. Uchiyama, et. al., Thin Solid Films, 430, 165 (2003). https://doi.org/10.1016/S0040-6090(03)00100-7

I.B. Sapaev, et. al., E3S Web of Conferences, 410, 02057 (2023). https://doi.org/10.1051/e3sconf/202341002057

I.B. Sapaev, et. al., E3S Web of Conferences, 413, 04009 (2023). https://doi.org/10.1051/e3sconf/202341304009

I.B. Sapaev, et. al., E3S Web of Conferences, 413, 04008 (2023). https://doi.org/10.1051/e3sconf/202341304008

Published
2025-03-03
Cited
How to Cite
Sadullaev, S. O., Sapaev, I. B., & Abdikarimov, K. E. (2025). Modeling and Theoretical Study of p-n Heterojunctions Based on CdTe/Si: Band Alignment, Carrier Transport, and Temperature-Dependent Electrophysical Properties. East European Journal of Physics, (1), 211-216. https://doi.org/10.26565/2312-4334-2025-1-22