Optical Performance and Crystal Structure of TiO2 Thin Film on Glass Substrate Grown by Atomic Layer Deposition

  • Temur K, Turdaliev Arifov Institute of Ion-Plasma and Laser Technologies of Uzbekistan Academy of Sciences, Tashkent, Uzbekistan https://orcid.org/0000-0002-0732-9357
Keywords: Titanium dioxide thin films, Atomic layer deposition, Anatase phase, X-ray diffraction, Raman spectroscopy, Bandgap energy, Optical properties, Urbach energy, Nanocrystalline structure

Abstract

This study investigates the formation of the optical properties and crystal structure of TiO2 thin films, with a thickness of approximately 1.5 micrometers, grown on a glass substrate using the atomic layer deposition method with titanium tetraisopropoxide and water as precursors. X-ray diffraction and Raman spectroscopy analyses confirmed that the TiO2 films crystallize in the anatase polymorphic phase. The films exhibit a nanocrystalline structure with an average crystallite size of approximately 28 nanometers, as established by X-ray diffraction measurements. The X-ray diffraction pattern revealed distinct peaks at 2θ angles of 25.3°, 38.6°, 48.0°, 55.0°, and 70.4°, corresponding to the (101), (112), (020), (121), and (220) crystallographic planes, while the Raman spectra exhibited pronounced peaks at frequencies of 143, 194, 392, 514, and 637 cm⁻¹, all characteristic of the anatase phase of TiO2. The Tauc method applied to the absorption spectra of the thin film showed that it has a direct bandgap of 3.2 eV and an indirect bandgap of 2.3 eV.

Downloads

References

A. Garzon-Roman, C. Zúñiga-Islas, and D.H. Cuate-Gomez, Silicon, 16, 61 (2024). https://doi.org/10.1007/s12633-023-02652-8

A. Garzon-Roman, C. Zúñiga-Islas, D.H. Cuate-Gomez, and A. Heredia-Jimenez, Sens. Actuators A: Phys. 349, 114064 (2023). https://doi.org/10.1016/j.sna.2022.114064

V. Morgunov, S. Lytovchenko, V. Chyshkala, D. Riabchykov, and D. Matviienko, East Eur. J. Phys. (4), 18 (2021), https://doi.org/10.26565/2312-4334-2021-4-02

D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, and X. Wang, Nanomaterials, 10, 546 (2020). https://doi.org/10.3390/nano10030546

A. Soussi, A. Ait Hssi, and M. Boujnah, J. Electron. Mater. 50, 4497 (2021). https://doi.org/10.1007/s11664-021-08976-8

Y. R. Park and K. J. Kim, Thin Solid Films, 484, 34 (2005). https://doi.org/10.1016/j.tsf.2005.01.039

P. Makuła, M. Pacia, and W. Macyk, J. Phys. Chem. Lett. 9, 6814 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

W.A.A. Garhoom, and Z. Al Shadidi, East Eur. J. Phys. (4), 164 (2021). https://doi.org/10.26565/2312-4334-2021-4-22

H. Al Dmour, East Eur. J. Phys. (3), 555 (2023). https://doi.org/10.26565/2312-4334-2023-3-65

Y. Wei, Q. Wu, H. Meng, Y. Zhang, and C. Cao, RSC Advances, 13(30), 20584-20597 (2023). https://doi.org/10.1039/D2RA07839B

C. He, J. He, S. Cui, X. Fan, S. Li, Y. Yang, X. Tan, et al., Nanomaterials, 13(24), 3123 (2023). https://doi.org/10.3390/nano13243123

D.A. Deen, J.G. Champlain, and S.J. Koester, Appl. Phys. Lett. 103 (7), 073504 (2013). https://doi.org/10.1063/1.4818754

D. Nunes, E. Fortunato, and R. Martins, Discover Materials, 2, 2 (2022). https://doi.org/10.1007/s43939-022-00023-5

H.-H. Li, G.-J. Yuan, B. Shan, X.-X. Zhang, H.-P. Ma, Y.-Z. Tian, H.-L. Lu, and J. Liu, Nanoscale Research Letters, 14, 119 (2019). https://doi.org/10.1186/s11671-019-2947-5

I.J. Abdisaidov, S.G. Gulomjanova, I.K. Khudaykulov, and K.B. Ashurov, East Eur. J. Phys. (3), 355-358 (2024). https://doi.org/10.26565/2312-4334-2024-3-41

D. Rafieian, W. Ogieglo, T. Savenije, and R.G.H. Lammertink, AIP Adv. 5, 097168 (2015). https://doi.org/10.1063/1.4931925

K. Al-Attafi, H.A. Mezher, A.F. Hammadi, A. Al-Keisy, S. Hamzawy, H. Qutaish, and J.H. Kim, Nanomaterials 13, 1940 (2023). https://doi.org/10.3390/nano13131940

H.Y. He, Res. Chem. Intermed. 36, 155 (2010). https://doi.org/10.1007/s11164-010-0125-6

T.K. Turdaliev, K.B. Ashurov, and R.K. Ashurov, Journal of Applied Spectroscopy, 91, (2024). https://doi.org/10.1007/s10812-024-01783-z

M. Aravind, M. Amalanathan, and M.S.M. Mary, SN Appl. Sci. 3, 409 (2021). https://doi.org/10.1007/s42452-021-04281-5

V. Galstyan, E. Comini, G. Faglia, and G. Sberveglieri, Sensors, 13, 14813 (2013). https://doi.org/10.3390/s131114813

A.A. Rempel, A.A. Valeeva, A.S. Vokhmintsev, and I.A. Weinstein, Russ. Chem. Rev. 90, 1397 (2021). https://doi.org/10.1070/RCR4991

J. Jitputti, Y. Suzuki, and S. Yoshikawa, Catal. Commun. 9, 1265 (2008). https://doi.org/10.1016/j.catcom.2007.11.016

J. Jia, H. Yamamoto, and T. Okajima, Nanoscale Res. Lett. 11, 324 (2016). https://doi.org/10.1186/s11671-016-1531-5

J. Andújar, T. Theivasanthi, T. Thirugnanasambandan, and M. Alagar, arXiv: Chem. Phys. (2013). https://arxiv.org/pdf/1307.1091

A.E. Maftei, A. Buzatu, G. Damian, N. Buzgar, H.G. Dill, and A.I. Apopei, Minerals, 10, 988 (2020). https://doi.org/10.3390/min10110988

D. Rajkumar, H. Umamahesvari, and P. Nagaraju, J. Mater. Sci.: Mater. Electron. 34, 38 (2023). https://doi.org/10.1007/s10854-022-09106-8

O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai, and L. Kavan, Phys. Chem. Chem. Phys. 14, 14567 (2012). https://doi.org/10.1039/C2CP42763J

I. Y. Bouderbala, A. Guessoum, and S. Rabhi, Appl. Phys. A, 130, 205 (2024). https://doi.org/10.1007/s00339-024-07366-1

C.M. Mahajan, JOM, 75, 448 (2023). https://doi.org/10.1007/s11837-022-05621-5

V.R. Akshay, B. Arun, G. Mandal, and M. Vasundhara, Phys. Chem. Chem. Phys. 21, 12991 (2019). https://doi.org/10.1039/C9CP01351B

Y. Alaya, R. Souissi, M. Toumi, M. Madani, L. El Mir, N. Bouguila, and S. Alaya, RSC Adv. 13, 21852 (2023). https://doi.org/10.1039/D3RA02387G

Published
2025-03-03
Cited
How to Cite
Turdaliev, T. K. (2025). Optical Performance and Crystal Structure of TiO2 Thin Film on Glass Substrate Grown by Atomic Layer Deposition. East European Journal of Physics, (1), 250-255. https://doi.org/10.26565/2312-4334-2025-1-27